• Title/Summary/Keyword: thermodynamic properties

Search Result 561, Processing Time 0.027 seconds

Prediction of Density and Viscosity for $CO_2$-PEC9 Mixture at Low Oil Concentration (낮은 오일 농도에서 $CO_2$-PEC9 혼합물의 밀도와 점성 예측)

  • Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.733-738
    • /
    • 2008
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems. Oils are always required in a vapor-compression cycle, and thus it is necessary to precisely estimate the thermodynamic mixture properties of $CO_2$-lubricant oil. In the present study, the density and the viscosity of the mixture was calculated by the Redlich and Kwong type EoS and the modified Peng and Robinson type viscosity EoS, respectively. The viscosity model was based on the similarity between P-v-T and T-$\mu$-P relationships. The predicted results were compared with the experimental data of Pens ado et al. whose test conditions were 100$\sim$650 bar of pressure and 303 K$\sim$353 K of temperature with the $CO_2$-POEs mixtures under 92.2 wt.% and 83.3 wt.% of $CO_2$ concentration. The mean deviations of the mixture density were 7.93% and 8.32% for 92.2 wt.% and 83.3 wt.% of $CO_2$ concentration, respectively. Concerning the viscosity, the mean deviations were 4% and 10% for 92.2 wt.% and 83.3 wt.% of $CO_2$ concentration under the Pensado et al.'s test conditions.

Determination of Optimum pH of Enzyme by Electrochemical Method (전기화학적 방법에 의한 효소의 최적 pH 결정)

  • Yoon, Kil-Joong;Lee, Beom-Gyu;Kwon, Hyo-Shik
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • A biosensor for the determination of hydrogen peroxide was constructed by immobilizing of porcine small instestinal tissue in a plain carbon paste, and the effect of varying the $H_2O_2$ concentration and pH on the rate of catalytic reaction was evaluated. For the mathematical simplicity, no mediator was added. Electrochemical properties and the maximal rate could be derived from the quantitative analysis of the observed phenomena related to the electrode reaction. Also, pH dependence of the Michaelis constant enabled to calculate various thermodynamic parameters and subsequently to design a electrochemical method to determine the optimum pH of enzyme.

  • PDF

Thermal Stability of Ta-Mo Alloy Metal on Silicon Oxide (실리콘 산화막에 대한 Ta-Mo 금속 게이트의 열적 안정성)

  • Noh, Young-Jin;Lee, Chung-Gun;Kim, Jae-Young;Hong, Shin-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.3-6
    • /
    • 2003
  • This paper describes the interface stability of Ta-Mo alloy metal on $SiO_2$ Alloy was formed by co-sputtering method, and the alloy composition was varied by controlling Ta and Mo sputtering power. When the atomic composition of Ta was about 91%, the measured work function was 4.2eV that is suitable for NMOS gate. To identify interface stability between Ta-Mo alloy metal and $SiO_2$, C-V, FE-SEM(Field Emission-SEM), and XRD(X-ray diffraction) were performed on the samples annealed with rapid thermal processor between $600^{\circ}C$ and $900^{\circ}C$. Even after $900^{\circ}C$ rapid thermal annealing, excellent interface stability and electrical properties were observed. Also, thermodynamic analysis was studied to compare with experimental results.

  • PDF

Modelling and Analysis of Electrodes Erosion Phenomena of $SF_6$ Arc in a Laval Nozzle

  • Lee, Byeong-Yoon;Liau, Vui Kien;Song, Ki-Dong;Park, Kyong-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.972-974
    • /
    • 2005
  • The present work deals with the theoretical study of the effects of copper vapours resulting from the erosion of the electrodes on the properties of a SF6 arc in a Laval nozzle. Computations have been done for a DC arc of 1000A with upstream gas pressure of 3.75MPa. The arc plasma is assumed to be in local thermodynamic equilibrium(LTE). The sheath and non-equilibrium region around the electrodes are not considered in this model. However, its effects on the energy flux into the electrodes are estimated from some experimental and theoretical data. The turbulence effects are calculated using the Prandtl mixing length model. A conservation equation for the copper vapour concentration is solved together with the governing equations for mass, momentum and energy of the gas mixture. Comparisons were made between the results with and without electrodes erosion. It has been found that the presence of copper vapours cools down the arc temperature due to the combined effects of increased radiation and increased electrical conductivity. The copper vapour distribution is very sensitive to the turbulent parameter. The erosion of upstream electrode(cathode) has larger effects on the arc compared to the downstream electrode(anode) as the copper vapour eroded from the anode cannot diffuse against the high-speed axial flow.

  • PDF

Modeling of Fin-Tube Heat Exchanger (핀-관 열교환기의 모델링)

  • 박희용;이관수;박동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.952-961
    • /
    • 1989
  • The purpose of this study is to investigate the behavior of operational and design factors on the performance characteristics of a horizontal fin-tube heat exchanger under phase change conditions for refrigerant. The flow and heat transfer in the heat exchanger are simulated numerically taking into account the variations of heat transfer coefficients, thermodynamic and flow properties of refrigerant, and the axial heat conduction in the tube wall. As the results of this study, it was found that the annular flow model was more reasonable physically than the homogeneous one for the two phase flow of refrigerant and axial heat conduction of tube wall did not have a great influence on the analysis. The effects of refrigerant pressure, mass flow rate of air, diameter of tube and the number of fins per unit length of tube were also discussed.

A Study on a Resorption Beat Pump Using Methanol-Glycerine (메탄올-글리세린을 이용한 재흡수 열펌프의 열역학적 모사 연구)

  • Min, Byong-Hun
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.284-290
    • /
    • 2006
  • The improvement of energy recovery is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Absorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. In this study, resorption heat pump for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70{\sim}80^{\circ}C$, by $40^{\circ}C$ in this system.

Nonstoichiometry of the Terbium Oxide

  • Yo Chul Hyun;Ryu Kwang Sun;Lee, Eun Seok;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.33-36
    • /
    • 1994
  • The x values of nonstoichiometric chemical formula, $Tb_4O_{7-{\delta}}\;or\;TbO_{1.5+x}$, have been determined in temperature range from 600$^{\circ}$C to 1000$^{\circ}$C under oxygen partial pressure of 2 ${\times}$ 10$^{-1}$ to 1 ${\times}$ 10$^{-5}$ atm by using quartz microbalance. The x values varied from 0.0478 to 0.1964 in the above conditions. The enthalpy of formation for x' in TbO$_{1.5+(0.25-xo-x')}$, ${\delta}H_f$, was 4.93-3.40 kcal mol$^{-1}$ and the oxygen partial pressure dependence was -1/8.80∼-1/11.8 under these conditions. The electrical conductivity of the $TbO_{1.5+x}$ was measured under the same conditions and the values varied from about 10$^{-3}$ to 10$^{-6}\;{\Omega}^{-1}cm^{-1}$ within semiconductor range. The activation energies for the conduction increase with oxygen partial pressure from 0.83 to 0.89 eV under the above conditions. The l/n values obtained from the oxygen pressure dependence of the conductivity are 1/4.4-1/5.2. The conduction mechanism, defect structure, and other physical properties of the oxides are dicussed with the x values, the electrical conductivity values, and the thermodynamic data.

Cure Shrinkage Characteristics of Resin Formulations by Thermomechanical Analysis (열기계적 분석법으로 측정된 레진 포뮬레이션의 경화 수축 특성)

  • Seo, Ahn Na;Lee, Jong-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.629-636
    • /
    • 2012
  • Volume shrinkage behavior accompanying the cure of resin formulations might be a critical factor when assembly processes using polymer materials are considered. In this study, cure shrinkage behavior with respect to resin formulation type and heating method was measured on sandwich structure samples by a thermomechanical analyzer (TMA). Quartz, used as a cover material for the sandwich structure, indicated the coefficient of thermal expansion close to $0ppm/^{\circ}C$. When a dynamic heating mode was conducted, a squeeze-out region and a cross-linking region for each resin formulation could be separated clearly with overlapping differential scanning calorimeter results on the TMA results. In addition, a cure shrinkage dominant region and a thermal expansion dominant region in the cross-linking region were distinguished. Consequently, the degree of cure at the initiation of the thermal expansion dominant region was successfully measured. Measurement of all resin formulations indicated the thermal expansion behavior exceeded cure shrinkage before full cure.

Separate Type Rotary Engine Cycle Analysis (분리형 로터리엔진 사이클 해석)

  • Ki, Dockjong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.104-111
    • /
    • 2019
  • A separate type rotary engine consisting of a compressor and an expander is under development. The engine motoring, compressor pressure, and fuel combustion have been tested with the initial prototype for operability checks of the mechanism. This paper describes an engine cycle analysis method designed specifically for this new-concept engine. The unique operational mechanism of the engine and the thermodynamic properties of each step of air intake, compression, filling of combustion chamber, combustion, expansion and exhaust were analyzed. The cycle efficiencies of this engine according to various engine design parameters as well as the cooling effect of compressed air between the compressor and expander can be easily calculated with this method; further, some case studies are presented in this paper.

The Study on the Physicochemical Properties of Fluid under High Pressure (Ⅱ). The Effect of Pressure and Temperature on the Hexamethyl Benzene-Iodine Charge Transfer Complex in n-Hexane

  • Kwun Oh Cheun;Kim Jeong Rim
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.186-191
    • /
    • 1985
  • The effect of pressure and temperature on the stabilities of the charge transfer complexes of hexamethyl benzene with iodine in n-hexane has been investigated by UV-spectrophotometric measurements. In this experiment the absorption spectra of mixed solutions of hexamethyl benzene and iodine in n-hexane were measured at 25, 40 and $60^{\circ}C$ under 1,200, 600, 1200 and 1600 bar. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red shift at higher pressure, the blue shift at higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions. In comparison with the results in the previous studies, it can be seen that the pressure dependence of oscillator strength has a extremum behavior in durene as the variation of ${\Delta}H$ or ${\Delta}S$ with the number of methyl groups of polymethyl benzene near atmospheric pressure in the previous study. The shift or deformation of the potential in the ground state and in the excited state of the complexes formed between polymethyl benzene and iodine was considered from the correlation between the differences of the electron transfer energies and the differences of free energies of the complex formation for the pressure variation.