• 제목/요약/키워드: thermodynamic properties

검색결과 560건 처리시간 0.022초

GM냉동기를 이용한 수소액화 시스템의 액화량 예측 (Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator)

  • 박대종;장호명;강병하
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.349-358
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for various hydrogen liquefaction systems using GM(Gifford-McMahon) refrigerator. Since the present authors' previous experiments showed that the liquefaction rate was approximately 5.1mg/s in a direct contact with a commercial GM refrigerator, the purpose of this study is to predict how much the liquefaction rate can be increased in different configurations and with improved heat exchanger performance. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the single-stage GM precooled L-H(Linde-Hampson) system, the two-stage GM direct contact system, the two-stage GM precooled L-H system and the two-stage helium GM-JT (Joule-Thomson) system. The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, when the two-stage precooling is employed and the effectiveness of heat exchangers approaches to 99.0%. It is concluded that the liquefaction rate is limited mainly by the cooling capacity of the current GM refrigerators and a larger scale of hydrogen liquefaction is possible with a greater capacity of cryocooler at 60-70 K range.

  • PDF

Molecular Dynamics Simulation of a Small Drop of Liquid Argon

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3805-3809
    • /
    • 2012
  • Results for molecular dynamics simulation method of small liquid drops of argon (N = 1200-14400 molecules) at 94.4 K through a Lennard-Jones intermolecular potential are presented in this paper as a preliminary study of drop systems. We have calculated the density profiles ${\rho}(r)$, and from which the liquid and gas densities ${\rho}_l$ and ${\rho}_g$, the position of the Gibbs' dividing surface $R_o$, the thickness of the interface d, and the radius of equimolar surface $R_e$ can be obtained. Next we have calculated the normal and transverse pressure tensor ${\rho}_N(r)$ and ${\rho}_T(r)$ using Irving-Kirkwood method, and from which the liquid and gas pressures ${\rho}_l$ and ${\rho}_g$, the surface tension ${\gamma}_s$, the surface of tension $R_s$, and Tolman's length ${\delta}$ can be obtained. The variation of these properties with N is applied for the validity of Laplace's equation for the pressure change and Tolman's equation for the effect of curvature on surface tension through two routes, thermodynamic and mechanical.

Sodium Dodecyl Sulfate(SDS)와 Tetraethylene Glycol Monododecyl Ether(TGME)의 혼합미셀화에 미치는 NaCl의 효과 (Effect of NaCl on the Mixed Micellar Properties of Sodium Dodecyl Sulfate(SDS) with Tetraethylene Glycol Monododecyl Ether(TGME))

  • 이병환
    • 대한화학회지
    • /
    • 제39권12호
    • /
    • pp.896-901
    • /
    • 1995
  • 순수 물 및 NaCl의 수용액에서 Sodium Dodecyl Sulfate(SDS)와 Tetraethylene glycol monodode-cyl ether(TGME)의 혼합계면활성제가 $25^{\circ}C$에서 나타내는 임계미셀농도값(CMC$^*$)들을 표면장력계로 측정하였으며, 이들 CMC$^*$값들이 음이온 계면활성제인 SDS의 몰분율 조성(${\alpha}_1$)과 첨과제인 NaCl의 농도에 따라 어떻게 변화하는지를 조사하였다. 유사상태분리모델을 기초로하는 비이상적 혼합비셀모델을 적용함으로써 측정된 CMC$^*$값들로부터 SDS/TGME 혼합계면활성제의 미셀화에 대한 여러가지 열역학적 함수값들을 계산하여 분석하였다.

  • PDF

Coconut husk as a biosorbent for methylene blue removal and its kinetics study

  • Dave, Shailesh R.;Dave, Vaishali A.;Tipre, Devayani R.
    • Advances in environmental research
    • /
    • 제1권3호
    • /
    • pp.223-236
    • /
    • 2012
  • Biosorption of methylene blue (MB) from aqueous solution was studied with respect to the point of zero charge of coconut husk, dye concentration, particle size, pH, temperature, as well as adsorbent and NaCl concentration using coconut husk biomass. Amongst Langmuir and Freundlich adsorption isotherms studied, Langmuir adsorption isotherm showed better agreement. Pseudo second order kinetics model was found to be more suitable for data presentation as compared to pseudo first order kinetics model. Also, involvement of diffusion process was studied using intraparticle diffusion, external mass transfer and Boyd kinetic model. Involvement of intraparticle diffusion model was found to be more relevant (prominent) as compared to external mass transfer (in) for methylene blue biosorption by the coconut husk. Moreover, thermodynamic properties of MB biosorption by coconut husk were studied. Desorption of methylene blue from biomass was studied with different desorbing agents, and the highest desorption achieved was as low as 7.18% with acetone, which indicate stable immobilization. Under the experimental conditions MB sorption was not significantly affected by pH, temperature and adsorbent concentration but low sorption was observed at higher NaCl concentrations.

다기통 엔진 흡기시스템의 유동해석 모델개발 (Development of a numerical flow model for the multi-cylinder engine intake system)

  • 송재원;성낙원
    • 대한기계학회논문집B
    • /
    • 제20권6호
    • /
    • pp.1921-1930
    • /
    • 1996
  • To design an optimum engine intake system, a flow model for the intake manifold was developed by the finite difference method. The flow in the intake manifold was one-dimensional, and the finite difference equations were derived from governing equations of flow, continuity, momentum and energy. The thermodynamic properties of the cylinder were found by the first law of thermodynamics, and the boundary conditions were formulated using steady flow model. By comparing the calculated results with experimental data, the appropriate boundary conditions and convergence limits for the flow model were established. From this model, the optimum manifold lengths at different engine operating conditions were investigated. The optimum manifold length became shorter when the engine speeds were increased. The effect of intake valve timings on inlet air mass was also studied by this model. Advancing intake valve opening decreased inlet air mass slightly, and the optimum intake valve closing was found. The difference in inlet air mass between cylinders was very small in this engine.

Monohydrated Sulfuric and Phosphoric Acids with Different Hydrogen Atom Orientations: DFT and Ab initio Study

  • Kolaski, Maciej;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1998-2004
    • /
    • 2012
  • We carried out DFT calculations for monohydrated sulfuric and phosphoric acids. We are interested in clusters which differ in orientation of hydrogen atoms only. Such molecular complexes are close in energy, since they lie in the vicinity of the global minimum energy structure on the flat potential energy surface. For monohydrated sulfuric acid we identified four different isomers. The monohydrated phosphoric acid forms five different conformers. These systems are difficult to study from the theoretical point of view, since binding energy differences in several cases are very small. For each structure, we calculated harmonic vibrational frequencies to be sure that if the optimized structures are at the local or global minima on the potential energy surface. The analysis of calculated -OH vibrational frequencies is useful in interpretation of infrared photodissociation spectroscopy experiments. We employed four different DFT functionals in our calculations. For each structure, we calculated binding energies, thermodynamic properties, and harmonic vibrational frequencies. Our analysis clearly shows that DFT approach is suitable for studying monohydrated inorganic acids with different hydrogen atom orientations. We carried out MP2 calculations with aug-cc-pVDZ basis set for both monohydrated acids. MP2 results serve as a benchmark for DFT calculations.

나프탈렌 및 그 유도체들과 클로라닐의 전하이동 착물에 관한 연구 (A Study on Charge-Transfer Complexes of Naphthalene and Derivatives of Naphthalene with Chloranil)

  • 문정대;장춘학
    • 대한화학회지
    • /
    • 제37권3호
    • /
    • pp.335-343
    • /
    • 1993
  • 나프탈렌, ${\alpha}$- 또는 ${\beta}$-메틸 나프탈렌 그리고 1,2- 1,3- 또는 2,6-디메틸나프탈렌과 클로라닐의 전하이동 착물의 흡수 극대 파장은 염화에틸렌, 염화메틸렌, 클로로포름 용매에서 그리고 10, 15, 20, 25$^{\circ}C$ 온도에서 자외선 분광광도법으로 측정하였다. 이 전하이동착물은 1:1 분자비로 결합하였으며 흡수극대 파장은 용매의 극성과 온도에 따라 변하였고, 형성상수(K$_f$)는 용매의 극성 그리고 온도가 증가함에 감소하였다. 이와같이 온도 및 용매가 형성상수에 미치는 효과를 열역학적 고찰로써 논의하였으며, 또한 전자주개들의 전자 및 입체 효과가 형성상수에 미치는 영향도 논의하였다.

  • PDF

대체 혼합물을 이용한 케로신의 초임계 열전달 특성 예측 (Prediction for Heat Transfer Characteristics of Supercritical Kerosene Using Mixture Surrogate)

  • 이상훈;양인영;박부민;이진희
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.294-296
    • /
    • 2017
  • 본 연구에서는 대체 혼합물을 이용하여 케로신의 초임계 조건에서의 열전달 특성을 예측하고 이를 열전달 계산에 적용하는 연구를 수행하였다. 케로신의 열전달 특성은 NIST SUPERTRAPP을 사용하여 대표 물질의 열물성 데이터를 조합함으로써 모사하였다. 본 연구를 통해 획득한 케로신의 열물성 DB는 초속 연소기의 재생 냉각 열교환기의 설계 변수 결정에 사용할 예정이며, 재생냉각 연소기의 연소 시험 결과와 비교를 통해 예측된 열물성 데이터의 타당성을 검증해 나갈 예정이다.

  • PDF

전자팽창밸브 제어성능 모사용 증발기 동특성 모델링 (A Dynamic Simulation Model of Electronic-Expansion-Valve-Controlled Evaporators)

  • 신영기;조수;태춘섭;장철용
    • 설비공학논문집
    • /
    • 제19권2호
    • /
    • pp.183-190
    • /
    • 2007
  • Controlling superheat of indoor units associated with a multi-type heat pump is one of difficult tasks to be addressed. This study suggests a dynamic model of an evaporator based on heat and mass balance. Thermodynamic properties are calculated by a commercial software, Refprop. The model is programmed in MFC Visual C++ for controller interface in real-time mode. The simulation results shows that PI control works for a narrow range of superheat. Beyond the range, the temperature behavior of the refrigerant is quite nonlinear mainly due to phase change. Thus, it is concluded that PI control of superheat has to be supplemented by nonlinear control ideas to avoid saturation and excessive superheat.

낮은 오일 농도에서 $CO_2$-PEC9 혼합물의 밀도와 점성 예측 (Prediction of Density and Viscosity for $CO_2$-PEC9 Mixture at Low Oil Concentration)

  • 윤린
    • 설비공학논문집
    • /
    • 제20권11호
    • /
    • pp.733-738
    • /
    • 2008
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems. Oils are always required in a vapor-compression cycle, and thus it is necessary to precisely estimate the thermodynamic mixture properties of $CO_2$-lubricant oil. In the present study, the density and the viscosity of the mixture was calculated by the Redlich and Kwong type EoS and the modified Peng and Robinson type viscosity EoS, respectively. The viscosity model was based on the similarity between P-v-T and T-$\mu$-P relationships. The predicted results were compared with the experimental data of Pens ado et al. whose test conditions were 100$\sim$650 bar of pressure and 303 K$\sim$353 K of temperature with the $CO_2$-POEs mixtures under 92.2 wt.% and 83.3 wt.% of $CO_2$ concentration. The mean deviations of the mixture density were 7.93% and 8.32% for 92.2 wt.% and 83.3 wt.% of $CO_2$ concentration, respectively. Concerning the viscosity, the mean deviations were 4% and 10% for 92.2 wt.% and 83.3 wt.% of $CO_2$ concentration under the Pensado et al.'s test conditions.