• Title/Summary/Keyword: thermodynamic effect

Search Result 375, Processing Time 0.028 seconds

Numerical Simulation considering Latent Heat Effect for Laser Cladding Process (잠열을 고려한 레이저 클래딩 공정의 수치해석)

  • Zhao, Guiping;Si, Ho-Mun;Jo, Jong-Du;Kim, Jae-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.134-147
    • /
    • 2001
  • Laser cladding process accompanies phase transformations from melting (on heating) through solidifying (on cooling) at the same time within a small material volume and to final solid phase. The phase transformations are not reversible, but an irreversible thermodynamic process; they accompany either absorption or release of thermal energy (referred to latent heat) during transformation. Yet, most analyses on materials processed by laser as a heat source have been performed on models of neglecting the latent heat in the process and those did not Justify the simplification. With literatures on the laser material process, we have not place an answer to how little the assumption affects on analyses. This led us to our current study: the effects of latent heat on thermo-mechanical analysis. To this end, we developed a fairly accurate program accommodating an algorithm for enforcing the latent heat whenever necessary and ran it combining with ABAQUS$^{TM}$. The simulation techniques we used in this study were verified by directly comparing our prediction with experimental publications elsewhere; our numerical results agreed accurately with the experiments. On the effects of the latent heat, we performed two alternatives about considering the latent heat in analysis, and compared each other. As a result, we found that more accurate conclusions might come out when considering the latent heat in process analyses.s.

  • PDF

THE EFFECT OF ACID CONCENTRATION AND pH OF LACTATE BUFFER SOLUTION ON THE PROGRESS OF ARTIFICIAL CARIES LESION IN HUMAN TOOTH ENAMEL (유산완충액을 이용한 인공치아우식의 형성에 미치는 산의 농도와 pH에 관한 연구)

  • Park, Seong-Ho;Lee, Chan-Young;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.277-290
    • /
    • 1993
  • Dental caries is considered to be caused by demineralization by organic acid produced by microorganism. But the formation of subsurface lesion in initial caries make it diffcult to explain by simple demineralization. This study is carried out on the basis of thermodynamic concept proposed by Margolis and Moreno. The purpose of this study is to evaluate the effects of acid concentration and pH of lactate buffer system on the artificial caries lesion progress. 160 teeth without any crack, defect or opaque enamel were used and coated with nail varnish except the window ($2{\times}3$ mm). Under the constant degree of saturation(D.S.). The teeth were divided into 8 groups according to acid concentration(10mM, 25mM, 50mM, 100mM) and pH(4.3, 5.0, 6.0). Each group was immersed in buffer solution for 3, 6, 9, 18 days under controlled temperature($25^{\circ}C$). After cutting through the window and grinding, the specimens, 100-150 um in thickness, were imbibed in water or air and examined using polarilizing microscope. The depth of the surface and subsurface surface lesion were measured. 1. In the constant pH and D. S. value, the subsurface lesion progresses more rapidly as the concentration of lactic acid increases. (0.01, 0.025, 0.05, 0.1) 2. In the constant acid concentration and DS value, the subsurface lesion progresses more slowly as the pH increases. (4.3, 5.0, 5.5, 6.0) 3. The width of surface lesion seems to be constant independant of pH and acid concentration.

  • PDF

Feedforward EGR Control of a Passenger Car Diesel Engine Equipped with a DC Motor Type EGR Valve (DC 모터방식 EGR 밸브를 적용한 승용디젤엔진의 앞먹임 공기량 제어에 관한 연구)

  • Oh, Byoung-Gl;Lee, Min-Kwang;Park, Yeong-Seop;Lee, Kang-Yoon;SunWoo, Myoung-Ho;Nam, Ki-Hoon;Cho, Sung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.14-21
    • /
    • 2011
  • In diesel engines, accurate EGR control is important due to its effect on nitrogen oxide and particulate matter emissions. Conventional EGR control system comprises a PI feedback controller for tracking target air mass flow and a feedforward controller for fast response. Physically, the EGR flow is affected by EGR valve lift and thermodynamic properties of the EGR path, such as pressures and temperatures. However, the conventional feedforward control output is indirectly derived from engine operating conditions, such as engine rotational speed and fuel injection quantity. Accordingly, the conventional feedforward control action counteracts the feedback controller in certain operating conditions. In order to improve this disadvantage, in this study, we proposed feedforward EGR control algorithm based on a physical model of the EGR system. The proposed EGR control strategy was validated with a 3.0 liter common rail direct injection diesel engine equipped with a DC motor type EGR valve.

Thermodynamic Performance Analysis of Heat Pump Using Thermoelectric Semiconductor (열전반도체를 이용한 열펌프의 열역학적 성능 해석)

  • 박영무
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.95-103
    • /
    • 1993
  • A conceptual thermoelectric heat pump(cooling mode) of small capacity is designed. Its performance is investigated through parametric analysis. COP and cooling capacity decease as the ambient temperature increases with ${\mu}$, J, T$\sub$wi/, fixed. To design a system of fixed capacity comes to calculate ${\mu}$ and J when T$\sub$wi/, and T$\sub$a/ are given. As v is fixed by semi-conductor manufacturers, optimum combination of n and I should be searched for ν. Optimum current could be calculated using ${\mu}$-J curve and optimum value of ${\mu}$. COR$\sub$R/ increases as water flow rate increases and T$\sub$a/ decreases. The effect of heat transfer coefficient at hot(heat releasing) side is more significant than that at cold(heat absorbing) side.

  • PDF

Pressure Effect on the Dissociation Reactions of Some Weak Acids (약산의 해리반응에 미치는 압력의 영향)

  • J. U. Hwang;J. J. Chung;Y. T. Park;J. G. Jee;E. S. Park
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.311-319
    • /
    • 1983
  • The dissociation constants of anilinium ion, o-toluidinium ion, phenol and o-chlorophenol were measured spectroscopically in aqueous solution over the temperature range of 10∼40$^{\circ}C$ and at the pressures up to 2,000 bars. The effects of temperature and pressure on the dissociation of the phenols are the same as those of the ordinary weak acids. Meanwhile the dissociation constants of anilinium ions are increased with temperature raising and decreased with pressure elevation. The effects of pressure on the constants can be explained by taking account of change of charge during dissociation reaction; there are increase in charge in the dissociation of phenols but anilinium ions are not. Several thermodynamic properties, ${\Delta}H^{circ}$,${\Delta}G^{circ}$, ${\Delta}S^{circ}$,${\Delta}V^{circ}$ and ${\beta}$ are calculated from those constants, and the dissociation reactions are discussed by them.

  • PDF

Studies on the Thermostability of Myofibrillar Proteins from Fresh Water Fish and Sea Water Fish (담수어와 해수어의 근원섬유단백질의 열안정성에 관한 연구)

  • 신완철;송재철;최석영;홍상필
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.4
    • /
    • pp.574-578
    • /
    • 2001
  • Myofibrillar proteins were prepared from red muscle and white muscle of fresh water fish and sea water fish, and their thermostabilities and effect of temperature on the myofibrillar ATPase activities were compared. Differences in temperature dependency of myofibrillar ATPase activities were found between two species. Thermodynamic data for inactivation of myofibrillar proteins, such as D value, Z value, $\Delta$ $H^{{\neq}}$, $\Delta$ $G^{{\neq}}$ and $\Delta$ $S^{\neq}$ revealed that thermostabilities of myofibrillar proteins from fresh water fish were higher than those from sea water fish, and that myofibrillar proteins from red muscle were more heat labile than those from white muscle.

  • PDF

Complex Formation of Substituted Benzo-1,4,7,10,13-pentaoxacyclopentadecane (B15C5) with Nd(Ⅲ) (Nd(Ⅲ)과 치환된 Benzo-1,4,7,10,13-pentaoxacyclopentadecane (B15C5)와의 착물 형성에 관한 연구)

  • Kim, Hae-Joong;Kim, Jeong;Kim, Si-Joong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.6
    • /
    • pp.440-445
    • /
    • 1995
  • The chemical compositions and stability constants, thermodynamic parameters for the neodymium(Ⅲ) complexes of substituted benzo-1,4,7,10,13-pentaoxacyclopentadecane(B15C5) have been determined by spectrophotometry and conductometry in methanol solution at various temperatures. As substituents, CH3, Br, CHO, NO2, and 3,4-(NO2)2 were used. In methanol solution the ratios of neodymium(Ⅲ) to the ligands in the complexes are 1 : 1. The stability constants were increased in order of B15C5-3,4-(NO2)2 < B15C5-NO2 < B15C5-CHO < B15C5-Br < B15C5 < B15C5-CH3. This observation can be explained in terms of the substituent effect. The order of stability constants was dimethylsulfoxide < acetone < acetonitrile in solution and the magnitudes were found to be inversely proportional to the solvents donicities. These results could be understood in terms of solvent basicity, ligand basicity, solvation of the cation, and entropy changes of complex formation.

  • PDF

Effect of N-Methyl Acetamide on the Critical Micelle Concentration of Aqueous Solutions of Some Surfactants (수용액상 계면활성제의 임계 미셀 농도에 대한 N-methyl acetamide의 영향)

  • Alawi, Sadeq M.;Akhter, M. Salim
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.163-168
    • /
    • 2011
  • The variations of molar conductivity of various surfactants such as sodium caprylate, sodium laurate, sodium palmitate, sodium stearate, sodium oleate, sodium dodecyl sulphate, and lithium dodecyl sulphate with concentrations of the surfactants for each of the solutions consisting of mixtures of varying concentrations of N-methyl acetamide in water at constant temperature of $30{\pm}0.2^{\circ}C$ were studied. The critical micelle concentration (CMC) for each surfactant is measured. It is found that the CMC values in mixtures of N-methyl acetamide and water solutions of various surfactants are lower than the CMC values in water, and the driving force for micelle formation correlates with solvophobicity. The surfactant-solvent interactions that drive amphiphilic self-organization in N-methyl acetamide in water are discussed. Thermodynamic parameters were evaluated for micellar system to explain the results.

Study on Thermodynamics of Three Kinds of Benzindocarbocyanine Dyes in Aqueous Methanol Solution

  • Huang, Wei;Wang, Lan-Ying;Fu, Yi-Le;Liu, Ji-Quan;Tao, You-Ni;Fan, Fang-Li;Zhai, Gao-Hong;Wen, Zhen-Yi
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.556-560
    • /
    • 2009
  • Aggregation behavior of three kinds of benzindocarbocyanine dyes in aqueous methanol solution was studied by UV-Vis absorption spectrum. The results indicated that the three dyes all existed monomer-dimer equilibrium in aqueous methanol solution (concentration range $10^{−5}\;to\;10^{−6}$ M) at 25.0$\sim$41.0 ${^{\circ}C}$ for Dye 1, 28.0$\sim$49.0 ${^{\circ}C}$ for Dye 2 and 26.0$\sim$47.0 ${^{\circ}C}$ for Dye 3. The fundamental property of the three dyes as the dimeric association constant KD, the dimeric free energy ${\Delta$}G_D, the dimeric entropy ${\Delta$}S_D, and the dimeric enthalpy ${\Delta$}H_D were determined. The ${\Delta$}H_D of three dyes: Dye 1, Dye 2 and Dye 3 was -42.5, -15.1 and -18.9 kJ/mol, respectively. The experimental observations were the subject of a theoretical study including the ground-state geometries which were fully optimized using DFT at B3LYP/6-31G level. The effect of dye molecule structure on ${\Delta$}H_D was discussed by theoretical calculations.

Effect of Crystal Form on Bioavailability (결정형이 생체이용률에 미치는 영향)

  • Sohn, Young-Taek
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.443-452
    • /
    • 2004
  • Habit is the description of the outer appearance of a crystal. If the environment of a growing crystal affects its external shape without changing its internal structure, a different habit results. Crystal habit and the internal structure of a drug can affect bulk and physicochemical properties, which range from flowability to chemical stability. A polymorph is a solid crystalline phase of a given compound resulting from the possibility of at least two different arrangements of the molecules of that compound in the solid state. Chemical stability and solubility changes due to polymorphism can have an impact on a drug's bioavailability and its development program. During crystallization from a solution, crystals separating may consist of a pure component or be a molecular compound. Solvates are molecular complexes that have incorporated the crystallizing solvent molecule in their lattice. When the solvent incorporated in the solvate is water, it is called a hydrate. To distinguish solvates from polymorphs, which are not molecular compounds, the term pseudopolymorph is used. Identification of possible hydrate compounds is important since their aqueous solubilities can be significantly less than their anhydrous forms. Conversion of an anhydrous compound to a hydrate within the dosage form may reduce the dissolution rate and extent of drug absorption. An amorphous solid may be treated as a supercooled liquid in which the arrangement of molecules is random. Amorphous solids lack the three-dimensional long-range order found in crystalline solids. Since amorphous forms are usually of higher thermodynamic energy than corresponding crystalline forms, solubilities as well as dissolution rates are generally greater. A study on crystal form includes characterization of (l)crystal habit, (2)polymorphism, (3)pseudopolymorphism, (4)amorphous solid.