• 제목/요약/키워드: thermocouple

검색결과 361건 처리시간 0.026초

미연혼합기의 난류특성과 이중분류버너화염의 연소특성에 관한 실험적 연구 (An experimental study on turbulence characteristics of mixture and combustion characteristics of doubled jet burner flames)

  • 최경민;장인갑;최병륜
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.213-223
    • /
    • 1997
  • Premixed flame is better than diffusion flame to accomplish a high loading combustion. Since the turbulent characteristics of unburned mixture has a great influence on the flame structure, it is general that many researchers realize a high loading combustion with strengthening turbulent intensity of unburned mixture. Because turbulent premixed flame reacts efficiently on the condition of distributed reaction region, we made high turbulent premixed flame in the doubled impingement field. We investigated turbulent characteristics of unburned mixture with increasing shear force and visualized flames with direct and Schlieren photographs. And the combustion characteristics of flame was elucidated by instantaneous temperature measurement with a thermocouple, by ion currents with a micro electrostatic probe, by radical luminescence intensity and local equivalence ratio. Extremely strong turbulent of small scale is generated by impingement of mixture, and turbulent intensity of unburned mixture increased with the mean velocity. As a result of direct photographs, visible region of flame became longer due to increasing central direction flux. But as strengthed turbulent intensity, visible region of flame turned to shorter and reaction occurred efficiently. As strengthened turbulent intensity of mixture with increasing flux of central direction, maximum fluctuating temperature region moved to radial direction and fluctuation of temperature became lower. The reason is influx of central direction which caused flame zone to move toward radial direction, to maintain flame zone stable and to make flame scale smaller.

쾌속 열용삭 공정에서 열반경 최소화를 위한 열 공구 설계에 관한 연구 (A Study of Design for Hot Tool to Minimize Radius of Heat Affected Zone in Rapid Heat Ablation process)

  • 김효찬;이상호;송민섭;양동열;박승교
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.743-748
    • /
    • 2005
  • In order to realize a three-dimensional shape on CAD, the machining process has been widely used because it offers practical advantages such as precision and versatility. However, the traditional machining process needs a large amount of time in cutting a product and the remained material causes trouble such as inconvenience for clarity. Therefore, a new rapid manufacturing process using the hot tool, Rapid Heat Ablation process (RHA), has been developed. In this paper, the hot tool for RHA process is devised to minimize radius of heat affected zone and also investigated for verification. TRIZ well-known as creative problem solving method is applied to overcome the contradictive requirements of the hot tool. For the detailed design of the hot tool, numerical model is established with several assumptions. Based on the numerical results, surface temperature is measured with K-type thermocouple at the predetermined location. Numerical and experimental results show that the devised hot tool fulfils its requirements. It verifies the practicality of hot tool that the hemisphere shape is ablated using the hot tool with stair structure.

  • PDF

예열온도조건에 따른 알루미늄 합금 주조재의 응고특성에 관한 연구 (A Study on Solidification Characteristics of Aluminum Alloy Casting Material by Pre-heated Temperature Conditions)

  • 윤천한;윤희성;오율권
    • 한국안전학회지
    • /
    • 제27권4호
    • /
    • pp.7-12
    • /
    • 2012
  • In this study, the solidification characteristics inside the AC7A casting material was analyzed using the numerical analysis method and was verified using the experimental method by the pre-heated temperature conditions of metal casting device. For the numerical analysis, "COMSOL Multiphysics", the commercial code based on the finite element analysis(FEA), was used in order to predict the thermal deformation of the AC7A casting material including temperature, displacement and stress distribution. Also, in order to verify the results calculated by the numerical analysis, the experiment for temperature measurement inside the AC7A casting material was performed using the K-type thermocouple under the same condition of numerical analysis method. In the numerical results, thermal deformation inside AC7A casting material was well-suited for manufacturing products when the pre-heated temperatures of the metal casting device was $250^{\circ}C$. When the results of the temperature distribution were experimentally measured and were compared with those of the numerical result, it appeared that there was some temperature difference because of the latent heat by phase change heat transfer. However, the result of cooling temperature and patterns were almost similar except for the latent heat interval. The solidification characteristics was closely related to the temperature difference between the surface and inside of the casting.

총채널 불확실도를 적용한 원전 노심출구온도의 운전가능 판정기준 (Operating Criteria of Core Exit Temperature in Nuclear Power Plant with using Channel Statistical Allowance)

  • 성제중;윤덕주;하상준
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.166-171
    • /
    • 2014
  • Nuclear power plants are equipped with the reactor trip system (RTS) and the engineered safety features actuation system (ESFAS) to improve safety on the normal operation. In the event of the design basis accident (DBA), a various of post accident monitor(PAM)systems support to provide important details (e.g. Containment pressure, temperature and pressure of reactor cooling system and core exit temperature) to determine action of main control room (MCR). Operator should be immediately activated for the accident mitigation with the information. Especially, core exit temperature is a critical parameter because the operating mode converts from normal mode to emergency mode when the temperature of core exit reaches $649^{\circ}C$. In this study, uncertainty which was caused by exterior environment, characteristic of thermocouple/connector and accuracy of calibrator/indicator was evaluated in accordance with ANSI-ISA 67.04. The square root of the sum of square (SRSS) methodology for combining uncertainty terms that are random and independent was used in the synthesis. Every uncertainty that may exist in the hardware which is used to measure the core exit temperature was conservatively applied and the associative relation between the elements of uncertainty was considered simultaneously. As a result of uncertainty evaluation, the channel statistical allowance (CSA) of single channel of core exit temperature was +1.042%Span. The range of uncertainty, -0.35%Span ($-4.05^{\circ}C$) ~ +2.08%Span($24.25^{\circ}C$), was obtained as the operating criteria of core exit temperature.

그라파이트 나노윤활유의 열화 후 윤활 특성 비교 연구 (Comparative Study to the Tribological Characteristics of Graphite Nano Lubricants after Thermal Degradation)

  • 이재근;이창건;황유진;최영민;박민찬;최철;오제명
    • Tribology and Lubricants
    • /
    • 제24권4호
    • /
    • pp.190-195
    • /
    • 2008
  • Many researchers have tried to improve the tribological characteristics of lubricant by adding various nano particles in the base lubricant. But the reliability evaluation of the lubricants are rarely performed in its real operation condition. In this study, the physical property and the tribological characteristics of the graphite nano lubricant were evaluated and compared with raw lubricant after thermal degrading. In order to evaluate the tirbological characteristics, the disk-on-disk tribotester was adopted to measure the friction coefficient of the graphite nano lubricants. Also the temperature variations of friction surfaces were measured by the thermocouple installed on the fixed plate in the test chamber of the tribotester. The kinematic viscosity was measured using a capillary viscometer on the temperatures of 40, 60 and $80^{\circ}C$. The results showed that the graphite nano lubricant had lower friction coefficient and less wear on the friction surfaces than raw lubricant. After thermally degrading, the friction coefficients of graphite nano lubricant increased, but the friction coefficients after thermal degradation were still maintained lower than those of raw lubricant.

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E1호
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

분전함에서 이상발열 감지를 위한 광온도센서의 동작특성 분석 (Operating Characteristic Analysis of Optic Temperature Sensor for Overheat Detection in Panel Board)

  • 문현욱;김동우;길형준;김동욱;이기연;김향곤
    • 조명전기설비학회논문지
    • /
    • 제23권10호
    • /
    • pp.100-106
    • /
    • 2009
  • 본 논문에서는 전기설비의 전기적 접속부 또는 전기배선 등에서 발생하는 이상발열을 감지하는 방법에 대해 알아보고, 분전함에서의 발열상태를 실시간으로 모니터링하는 전력설비 진단시스템에 사용되고 있는 광온도센서에 대하여 동작특성을 실험, 분석하였다. 광온도센서의 동작특성 실험을 위한 열원으로는 Black Body와 Hot Plate를 사용하였으며 각각에서의 열원의 온도변화에 따른 광온도센서 출력전압값을 측정, 분석하였다. 그리고 분전함내 차단기 단자에서의 체결불량으로 인한 이상발열 감지 실험을 기존의 발열 감지방법인 열전대와 적외선 열화상장치를 이용하여 실시하였고, 광온도센서를 이용해 실시하여 결과를 비교 분석하였다. 실험결과, 광온도센서의 이상발열 감지능력이 유사함을 확인할 수 있었다. 이러한 분석 결과는 향후 RFID형 광온도센서를 이용한 전력설비 진단시스템의 현장 적용에 있어 기본 자료가 될 것으로 기대된다.

DEVELOPMENT STATUS OF IRRADIATION DEVICES AND INSTRUMENTATION FOR MATERIAL AND NUCLEAR FUEL IRRADIATION TESTS IN HANARO

  • Kim, Bong-Goo;Sohn, Jae-Min;Choo, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.203-210
    • /
    • 2010
  • The $\underline{H}igh$ flux $\underline{A}dvanced$ $\underline{N}eutron$ $\underline{A}pplication$ $\underline{R}eact\underline{O}r$ (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests.

치과 임플랜트 시술시 골천공기구의 회전속도가 주위 골조직의 온도 및 골일체성에 미치는 영향에 관한 연구 (A STUDY ON THE EFFECT OF ROTATIONAL SPEEDS OF THE TREPHINE MILL ON THE TEMPERATURE OF SURROUNDING BONE DURING DENIAL IMPLANTATION PROCEDURE AND OSSEOINTEGRATION OF IMPLANTS)

  • 이진걸;양재호;이선형
    • 대한치과보철학회지
    • /
    • 제30권2호
    • /
    • pp.167-189
    • /
    • 1992
  • Frictional heat produced by cutting tools during dental implantation procedure may destroy the surrounding bone tissue and regenerative capacity and interfere ossointegration by formation of undifferentiated connective tissue. To study the effect of frictional heat according to various rotational speeds on the regenerative capacity of surrounding bone tissue, 13 ITI HS implants (8 mm) were inserted at 4 mongrel dogs. Temperatures were measured using thermocouple located 6 mm below from the marginal crest and 0.5 mm from the periphery of trephine mill during implant bed preparation. After 4 and 9 months, animals were sacrificed and specimens were examined using x-rays and light microscope. Results were as follows: 1. With drill speeds of 300, 800, 2,000, 3,500 rpm and saline irrigation, temperatures of surrounding bone were decreased from $-2.9^{\circ}\;to\;-1.7^{\circ}C$. Temperature rises of $2.0^{\circ}\;and\;2.1^{\circ}C$ were recorded with a drill speed of 5,000 rpm and irrigation. 2. With drill speeds of 800, 3,500, 5,000 rpm and no irrigation, temperatures of surrounding bone rose from $+1.5^{\circ}\;to\;+6.8^{\circ}C$, but maximum temperature was $40^{\circ}C$ at 5,000 rpm. 3. On radiographic examination, bone resorptions were observed at the upper half of implant of 5,000 rpm without irrigation and one case of 5,000 rpm with irrigation. 4. Osseointegration was unsuccessful in cases of 3,500, 5,000 rpm without irrigation due to fibrous connective tissue formation to the outer surface and hollow, but it was successful in a case of 800 rpm without irrigation. 5. Osseointegration was successful in cases of 300, 800, 2,000 and 3,500 rpm with irrigation. But fibrous connective tissue formation was observed at the hollow of implant inserted with 5,000 rpm with irrigation.

  • PDF

THE FORMATION MECHANISM OF GROWN-IN DEFECTS IN CZ SILICON CRYSTALS BASED ON THERMAL GRADIENTS MEASURED BY THERMOCOUPLES NEAR GROWTH INTERFACES

  • Abe, Takao
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.187-207
    • /
    • 1999
  • The thermal distributions near the growth interface of 150mm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10m from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it si confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient (G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective lengths of the thermal gradient for defect generation are varied, were defined the effective length as 10mm from the interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitial. The experimental results which FZ and CZ crystals are detached from the melt show that growth interfaces are filled with vacancy. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitial are necessary. Such interstitial recombine with vacancies which were generated at the growth interface, next occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by the distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melt, respectively.

  • PDF