• 제목/요약/키워드: thermo-mechanical

검색결과 1,099건 처리시간 0.025초

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.659-674
    • /
    • 2020
  • The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

열하중을 받는 복합재료 적층판의 손상에 대한 열-음향방출해석 (Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading)

  • 김영복;민대홍;이덕보;최낙삼
    • 비파괴검사학회지
    • /
    • 제21권3호
    • /
    • pp.261-268
    • /
    • 2001
  • 열-음향방출(thermo-AE) 기법을 이용하여 두께 3mm, $[+45_6/-45_6]_s$ 복합재료 적층판의 열응력 유기 손상에 대한 비파괴평가의 유효성을 연구하였다. 반복적인 열부하 사이클에 의해서 thermo-AE 사상수가 감소하는 경향이 뚜렷하게 나타나서 열부하에 따른 카이저효과가 관찰되었다. 열부하사이클중의 thermo-AE거동을 분석하여 복합재료의 응력자유온도를 결정할 수 있었다. 초음파 C스캔, 광학현미경, 주사형 전자현미경을 통해 섬유파단과 모재파손이 관찰되었으며, 이들 파손 인자는 thermo-AE 신호의 단시간 퓨리에 변환처리에 의해 생성된 3종류의 서로 다른 시간-주파수 특성과 대응하였나 이 특성을 이용하여 복합재료의 냉각열처리 및 반복 열부하사이클시의 손상발생과정 및 내부 마찰거동 내역을 추적할 수 있었다.

  • PDF

Heat Transfer of an Evaporating Liquid on a Horizontal Plate

  • Joo, Sang-Woo;Park, Min-Soo;Kim, Min-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1649-1661
    • /
    • 2005
  • We consider. a horizontal static liquid layer on a planar solid boundary. The layer is evaporating when the plate is heated. Vapor recoil and thermo-capillary are discussed along with the effect of mass loss and vapor convection due to evaporating liquid and non-equilibrium thermodynamic effects. These coupled systems of equations are reduced to a single evolution equation for the local thickness of the liquid layer by using a long-wave asymptotics. The partial differential equation is solved numerically.

Dynamic response of functionally gradient austenitic-ferritic steel composite panels under thermo-mechanical loadings

  • Isavand, S.;Bodaghi, M.;Shakeri, M.;Mohandesi, J. Aghazadeh
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.1-28
    • /
    • 2015
  • In this paper, the dynamic response of functionally gradient steel (FGS) composite cylindrical panels in steady-state thermal environments subjected to impulsive loads is investigated for the first time. FGSs composed of graded ferritic and austenitic regions together with bainite and martensite intermediate layers are analyzed. Thermo-mechanical material properties of FGS composites are predicted according to the microhardness profile of FGS composites and approximated with appropriate functions. Based on the three-dimensional theory of thermo-elasticity, the governing equations of motionare derived in spatial and time domains. These equations are solved using the hybrid Fourier series expansion-Galerkin finite element method-Newmark approach for simply supported boundary conditions. The present solution is then applied to the thermo-elastic dynamic analysis of cylindrical panels with three different arrangements of material compositions of FGSs including ${\alpha}{\beta}{\gamma}M{\gamma}$, ${\alpha}{\beta}{\gamma}{\beta}{\alpha}$ and ${\gamma}{\beta}{\alpha}{\beta}{\gamma}$ composites. Benchmark results on the displacement and stress time-histories of FGS cylindrical panels in thermal environments under various pulse loads are presented and discussed in detail. Due to the absence of similar results in the specialized literature, this paper is likely to fill a gap in the state of the art of this problem, and provide pertinent results that are instrumental in the design of FGS structures under time-dependent mechanical loadings.

Thermo-mechanical damage of tungsten surfaces exposed to rapid transient plasma heat loads

  • Crosby, Tamer;Ghoniem, Nasr M.
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.207-217
    • /
    • 2011
  • International efforts have focused recently on the development of tungsten surfaces that can intercept energetic ionized and neutral atoms, and heat fluxes in the divertor region of magnetic fusion confinement devices. The combination of transient heating and local swelling due to implanted helium and hydrogen atoms has been experimentally shown to lead to severe surface and sub-surface damage. We present here a computational model to determine the relationship between the thermo-mechanical loading conditions, and the onset of damage and failure of tungsten surfaces. The model is based on thermo-elasticity, coupled with a grain boundary damage mode that includes contact cohesive elements for grain boundary sliding and fracture. This mechanics model is also coupled with a transient heat conduction model for temperature distributions following rapid thermal pulses. Results of the computational model are compared to experiments on tungsten bombarded with energetic helium and deuterium particle fluxes.

Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder

  • Saadatfar, M.;Aghaie-Khafri, M.
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1411-1437
    • /
    • 2015
  • The electro-magneto- thermo-elastic behavior of a rotating functionally graded long hollow cylinder with functionally graded piezoelectric (FGPM) layers is analytically analyzed. The layers are imperfectly bonded to its inner and outer surfaces. The hybrid cylinder is placed in a constant magnetic field subjected to a thermo-electro-mechanical loading and could be rested on a Winkler-type elastic foundation. The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to be graded in the radial direction according to the power law. The hybrid cylinder is rotating about its axis at a constant angular velocity. The governing equations are solved analytically and then stresses, displacement and electric potential distribution are calculated. Numerical examples are given to illustrate the effects of material in-homogeneity, magnetic field, elastic foundation, applied voltage, imperfect interface and thermo-mechanical boundary condition on the static behavior of a FG smart cylinder.

경사기능재료 판의 최적설계 (Optimal Design of Functionally Graded Plates)

  • 나경수;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1061-1064
    • /
    • 2006
  • Optimal design of functionally graded plates is investigated considering stress and critical temperature. Material properties are assumed to be temperature dependent and varied continuously in the thickness direction. The effective material properties are obtained by applying linear rule of mixtures. The 3-D finite element model is adopted using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. For stress analysis, the tensile stress ratio and compressive stress ratio of the structure under mechanical load are investigated. In the thermo-mechanical buckling analysis, temperature at each node is obtained by solving the steady-state heat transfer problem and Newton-Raphson method is used for material nonlinear analysis. Finally, the optimal design of FGM plates is studied for stress reduction and improving thermo-mechanical buckling behavior, simultaneously.

  • PDF