• Title/Summary/Keyword: thermo-mechanical

Search Result 1,093, Processing Time 0.035 seconds

Thermo-Mechanical Reliability of TSV based 3D-IC (TSV 기반 3차원 소자의 열적-기계적 신뢰성)

  • Yoon, Taeshik;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • The three-dimensional integrated circuit (3D-IC) is a general trend for the miniaturized and high-performance electronic devices. The through-silicon-via (TSV) is the advanced interconnection method to achieve 3D integration, which uses vertical metal via through silicon substrate. However, the TSV based 3D-IC undergoes severe thermo-mechanical stress due to the CTE (coefficient of thermal expansion) mismatch between via and silicon. The thermo-mechanical stress induces mechanical failure on silicon and silicon-via interface, which reduces the device reliability. In this paper, the thermo-mechanical reliability of TSV based 3D-IC is reviewed in terms of mechanical fracture, heat conduction, and material characteristic. Furthermore, the state of the art via-level and package-level design techniques are introduced to improve the reliability of TSV based 3D-IC.

Thermo-mechanical Contact Analysis on Disk Brakes by Using Simplex Algorithm

  • Cho, C.;Sun, Chan-Woong;Kim, Ju-Yong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.399-400
    • /
    • 2002
  • A numerical procedure for analyzing thermo-elastic contact applied to an automotive disk brake and calculating subsurface stress distribution has been developed. The proposed procedure takes the advantage of the simplex algorithm to save computing time. Flamant's solution and Boussinesq's solution are adopted as Green function in analysis. Comparing the numerical results with the exact solutions has proved the validity of this procedure.

  • PDF

Thermo-Elastic Analysis for Chattering Phenomenon of Automotive Disk Brake

  • Cho, Chongdu;Ahn, Sooick
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.569-579
    • /
    • 2001
  • This study investigates the effects of operating conditions on the chattering of an automotive disk brake by experimental and computational methods. Design factors, which cause chattering in automobiles, have attracted great attentions for long time; but they are not well understood yet. For this study, we construct a brake dynamometer for measuring the disk surface temperature during chattering, and propose an efficient hybrid algorithm (combining FFT-FEA and traditional FEA program) for analyzing the thermo-elastic behavior of three-dimensional brake system. We successfully measure the judder in a brake system via the dynamometer and efficiently simulate the contact pressure variation by the hybrid algorithm. The three-dimensional simulation of thermo-mechanical interactions on the automotive brake, showing the transient thermo-elastic instability phenomenon, is presented for the first time in this academic community. We also find from the experimental study that the disk bulk temperature strongly influences the brake chattering in the automotive disk brakes.

  • PDF

Finite Element Analysis of Tempearture and Thermal Struess of Work Roll in Hot Strip Rolling (유한요소법을 이용한 열연중 워크롤의 온도 및 열응력)

  • 손성강;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.231-235
    • /
    • 1999
  • An integrated finite element-based model is presented for the prediction of the three dimensional, transient thermo-mechanical behavior of the work roll in hot strip rolling. The model is comprised of basic finite element models which are incorporated into an iterative solution procedure to deal with the interdependence between the thermo-mechanical behavior of the strip and that of work roll, which arises from roll-strip contact, as well as with the interdependence between the thermal and mechanical behavior. Demonstrated is the capability of the model to reveal the detailed aspects of the thermo-mechanical behavior and to reflect the effect of various process parameters.

  • PDF

A study on thermo-mechanical behavior of MCD through bulge test analysis

  • Altabey, Wael A.
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.107-119
    • /
    • 2017
  • The Micro circular diaphragm (MCD) is the mechanical actuator part used in the micro electro-mechanical sensors (MEMS) that combine electrical and mechanical components. These actuators are working under harsh mechanical and thermal conditions, so it is very important to study the mechanical and thermal behaviors of these actuators, in order to do with its function successfully. The objective of this paper is to determine the thermo-mechanical behavior of MCD by developing the traditional bulge test technique to achieve the aims of this work. The specimen is first pre-stressed to ensure that is no initial deflection before applied the loads on diaphragm and then clamped between two plates, a differential pressure (P) and temperature ($T_b$) is leading to a deformation of the MCD. Analytical formulation of developed bulge test technique for MCD thermo-mechanical characterization was established with taking in-to account effect of the residual strength from pre-stressed loading. These makes the plane-strain bulge test ideal for studying the mechanical and thermal behavior of diaphragm in both the elastic and plastic regimes. The differential specimen thickness due to bulge effect to describe the mechanical behavior, and the temperature effect on the MCD material properties to study the thermal behavior under deformation were discussed. A finite element model (FEM) can be extended to apply for investigating the reliability of the proposed bulge test of MCD and compare between the FEM results and another one from analytical calculus. The results show that, the good convergence between the finite element model and analytical model.

Enhancement of Dimensional Stability of Compressed Open Cell Rigid Polyurethane Foams by Thermo-Mechanical Treatment

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • Thermo-mechanical treatment process of a compressed open-cell rigid polyurethane foam (OC-RPUF), which was fabricated for the vacuum insulation panel (VIP), was studied to obtain an optimum condition for the dimensional stability by the relaxation of compressive stress. Thermo-mechanical deformation of the sample OC-RPUF was shown to occur from about $120^{\circ}C$. Yield stress of 0.36 MPa was shown at about 10% yield strain. And, densification of the foam started to occur from 75% compressive strain and could be continued up to max. 90%. Compression set of the sample restored after initial compression to 90% at room temperature was ca. 82%. Though the expansion occurred to about twice of the originally compressed thickness in case of temperature rise to $130^{\circ}C$, it could be overcome and the dimensional stability could be maintained if the constant load of 0.3 MPa was applied. As the result, a thermo-mechanical treatment process, i.e, annealing process at temperature of $130{\sim}140^{\circ}C$ for about 20 min as is the maximum compressed state at room temperature, should be required for dimensional stability as an optimum condition for the use of VIP core material.

Thermo-Mechancal Fatigue of the Nickel Base Superalloy IN738LC for Gas Turbine Blades (가스터빈 블레이드용 IN738LC의 열기계피로수명에 관한 연구)

  • Fleury, E.;Ha, J.S.;Hyun, J.S.;Jang, S.W.;Jung, H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.188-193
    • /
    • 2000
  • A more accurate life prediction for gas turbine blade takes into account the material behavior under the complex thermo-mechanical fatigue(TMF) cycles normally encountered in turbine operation. An experimental program has been carried out to address the thermo-mechanical fatigue life of the IN738LC nickel-base superalloy. In the first phase of the study, out-of-phase and in-phase TMF experiments have been performed on uncoated and coated materials. In the temperature range investigated. the deposition of NiCrAlY air plasma sprayed coating did not affect the fatigue resistance. In the second phase of the study, a physically-base life prediction model that takes into account of the contribution of different damage mechanisms has been applied. This model was able to reflect the temperature and strain rate dependences of isothermal cycling fatigue lives, and the strain-temperature history effect on the thermo-mechanical fatigue lives.

  • PDF

A Numerical Study on the Thermo-mechanical Response of a Composite Beam Exposed to Fire

  • Pak, Hongrak;Kang, Moon Soo;Kang, Jun Won;Kee, Seong-Hoon;Choi, Byong-Jeong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1177-1190
    • /
    • 2018
  • This study presents an analytical framework for estimating the thermo-mechanical behavior of a composite beam exposed to fire. The framework involves: a fire simulation from which the evolution of temperature on the structure surface is obtained; data transfer by an interface model, whereby the surface temperature is assigned to the finite element model of the structure for thermo-mechanical analysis; and nonlinear thermo-mechanical analysis for predicting the structural response under high temperatures. We use a plastic-damage model for calculating the response of concrete slabs, and propose a method to determine the stiffness degradation parameter of the plastic-damage model by a nonlinear regression of concrete cylinder test data. To validate simulation results, structural fire experiments have been performed on a real-scale steel-concrete composite beam using the fire load prescribed by ASTM E119 standard fire curve. The calculated evolution of deflection at the center of the beam shows good agreement with experimental results. The local test results as well as the effective plastic strain distribution and section rotation of the composite beam at elevated temperatures are also investigated.

Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical loads

  • Ngo, Van Minh;Ibrahimbegovic, Adnan;Hajdo, Emina
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • In this work we provide the theoretical formulation, discrete approximation and solution algorithm for instability problems combing geometric instability at large displacements and material instability due to softening under combined thermo-mechanical extreme loads. While the proposed approach and its implementation are sufficiently general to apply to vast majority of structural mechanics models, more detailed developments are provided for truss-bar model. Several numerical simulations are presented in order to illustrate a very satisfying performance of the proposed methodology.

A study on the Dislocation-Free Shallow Trench Isolation (STI) Process (Dislocation-Free Shallow Trench Isolation 공정 연구)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.84-85
    • /
    • 2005
  • Dislocations are often found at Shallow Trench Isolation (STI) process after repeated thermal cycles. The residual stress after STI process often leads defect like dislocation by post STI thermo-mechanical stress. Thermo-mechanical stress induced by STI process is difficult to remove perfectly by plastic deformation at previous thermal cycles. Embedded flash memory process is very weak in terms of post STI thermo-mechanical stress, because it requires more oxidation steps than other devices. Therefore, dislocation-free flash process should be optimized.

  • PDF