• Title/Summary/Keyword: thermo-elastic analysis

Search Result 161, Processing Time 0.024 seconds

A Study on the Prediction of Welding Distortion of Vacuum Vessel during Fabrication Process (진공 용기 제작시 공정별 변형 예측에 관한 연구)

  • Lee, Dong-Ju;Kim, Ha-Geun;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.96-96
    • /
    • 2009
  • The purpose of this study is to clarify the transitional behavior and main factor of excessive welding distortion caused by fabrication process of STS 304 vacuum vessel having double curvature for the efficient quality control of vacuum vessel. In order to do it, the predictive equations of the welding distortion in simple weldment of vacuum vessel were established by conventional finite element analysis. And the principal factor controlling the welding distortion was identified by evaluating the welding distortion of vacuum vessel in each fabrication process with FEA and simplified thermo elastic method. Based on the results, the principal factors of distortion of vacuum vessel were clarified as angular distortion and transverse shrinkage which are a source of excessive out-of plane distortion in the double curved vacuum vessel. It was expected that the FE analysis results of this study could contribute to establish the proper control method of welding distortion for double curved vacuum vessel.

  • PDF

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Simplified welding distortion analysis for fillet welding using composite shell elements

  • Kim, Mingyu;Kang, Minseok;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.452-465
    • /
    • 2015
  • This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB) has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure (II) (선체 용접부의 균열진전 및 피로수명예측에 관한 연구(II))

  • Kim, Kyung-Su;Shim, Chun-Sik;Kwon, Young-Bin;Ko, Hee-Seung;Ki, Hyeok-Geun;Viswanathan, K.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.679-687
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of crack initiation and propagation stages. For a welding member in ship structure, the fatigue crack propagation life is more important than the fatigue crack initiation life. To calculate precisely the fatigue crack propagation life at the critical welding location, the knowledge of the residual stress sensitivity on the fatigue strength is necessary. In this study, thermo elastic-plastic analysis was conducted in order to examine the effect of residual stress on the fatigue crack propagation life. Also the fatigue crack propagation lives considering residual stress were calculated using fatigue crack growth code, AFGROW, on the basis of fracture mechanics. AFGROW is widely used for fatigue crack growth predictions under constant and variable amplitude loading. The reliability of AFGROW on the fatigue of ship structure was confirmed by the comparison of the estimated results with the fatigue propagation test results.

Coupled Nonlinear Finite Element-Boundary Element Analysis of Nuclear Waste Storage Structures Considering Infinite Boundaries (비선형 유한요소-경계요소 조합에 의한 핵폐기구조체의 무한영역해석)

  • 김문겸;허택녕
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.89-98
    • /
    • 1993
  • As the construction of nuclear power plants are increased, nuclear wastes disposal has been faced as a serious problem. If nuclear wastes are to be buried in the underground stratum, thermo-mechanical behavior of stratum must be analyzed, because high temperature distribution has a significant effect on tunnel and surrounding stratum. In this study, in order to analyze the structural behavior of the underground which is subject to concentrated heat sources, a coupling method of nonlinear finite elements and linear boundary elements is proposed. The nonlinear finite elements (NFE) are applied in the vicinity of nuclear depository where thermo-mechanical stress is concentrated. The boundary elements are also used in infinite domain where linear behavior is expected. Using the similar method as for the problem in mechanical field, the coupled nonlinear finite element-boundary element (NFEBE) is developed. It is found that NFEBE method is more efficient than NFE which considers nonlinearity in the whole domain for the nuclear wastes depository that is expected to exhibit local nonlinearity behavior. The effect of coefficients of the rock mass such as Poisson's ratio, elastic modulus, thermal diffusivity and thermal expansion coefficient is investigated through the developed method. As a result, it is revealed that the displacements around tunnel are largely dependent on the thermal expansion coefficients.

  • PDF

Development of Thermal Distortion Analysis Method Based on Inherent Strain for TMCP Steels (TMCP 강판의 고유변형도 기반 열변형 해석법 개발)

  • Ha, Yun-Sok;Yang, Jin-Hyuk;Won, Seok-Hee;Yi, Myung-Su
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • As ships become to be larger than ever, the thicker plate and the higher tensile steel plate are used in naval shipyard. Though special chemical composition is needed for high-tensile steels, recent high-tensile steels are made by the TMCP(Thermo-Mechanical control process) skill. The increase of yield stress and tensile stress of TMCP steels is induced from bainite phase which is transformed from austenite, but that increased yield stress can be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should reflect principle of TMCP steels. This study developed an algorithm which can calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the predicting of the portion of initial bainite is considered when calculating inherent strain. The simulations of plate deformation by these values showed good agreements with experimental results of normalizing steels and TMCP steels in welding and heating. Finally we made an inherent strain database of steels used in Class rule.

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

Nonlinear bending of functionally graded porous nanobeam subjected to multiple physical load based on nonlocal strain gradient theory

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • We in this paper study nonlinear bending of a functionally graded porous nanobeam subjected to multiple physical load based on the nonlocal strain gradient theory. For more reasonable analysis of nanobeams made of porous functionally graded magneto-thermo-electro-elastic materials (PFGMTEEMs), both constituent materials and the porosity appear gradient distribution in the present expression of effective material properties, which is much more suitable to the actual compared with the conventional expression of effective material properties. Besides the displacement function regarding physical neutral surface is introduced to analyze mechanical behaviors of beams made of FGMs. Then we derive nonlinear governing equations of PFGMTEEMs beams using the principle of Hamilton. To obtain analytical solutions, a two-step perturbation method is developed in nonuniform electric field and magnetic field, and then we use it to solve nonlinear equations. Finally, the analytical solutions are utilized to perform a parametric analysis, where the effect of various physical parameters on static bending deformation of nanobeams are studied in detail, such as the nonlocal parameter, strain gradient parameter, the ratio of nonlocal parameter to strain gradient parameter, porosity volume fraction, material volume fraction index, temperature, initial magnetic potentials and external electric potentials.

A Study on the Prediction of Warpage During the Compression Molding of Glass Fiber-polypropylene Composites (유리섬유-폴리프로필렌 복합재료의 압축 공정 중 뒤틀림 예측에 관한 연구)

  • Gyuhyeong Kim;Donghyuk Cho;Juwon Lee;Sangdeok Kim;Cheolmin Shin;Jeong Whan Yoon
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • Composite materials, known for their excellent mechanical properties and lightweight characteristics, are applied in various engineering fields. Recently, efforts have been made to develop an automotive battery protection panel using a plain-woven composite composed of glass fiber and polypropylene to reduce the weight of automobiles. However, excessive warpage occurs during the GF/PP compression molding process, which makes car assembly challenging. This study aims to develop a model that predicts the warpage during the compression molding process. Obtaining out-of-plane properties such as elastic or shear modulus, essential for predicting warpages, is tricky. Existing mechanical methods also have limitations in calculating these properties for woven composite materials. To address this issue, finite element analysis is conducted using representative volume elements (RVE) for woven composite materials. A warpage prediction model is developed based on the estimated physical properties of GF/PP composite materials obtained through representative volume elements. This model is expected to be used for reducing warpages in the compression molding process.

Evaluation of Buckling Distortion for the Thin Panel Welded Structure According to Welding Processes (박판 패널 용접부의 용접 기법에 따른 좌굴 변형에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this study is to propose the proper fillet welding process for preventing the buckling distortion in thin panel welded structure. In order to do it, a heat input model for laser hybrid welding process was developed using FEA and experiment. The principal factors controlling the angular distortion and longitudinal shrinkage force caused by FCA and laser hybrid welding were identified as the welding heat input and weld rigidity using FEA. The predictive equations of angular distortion and longitudinal shrinkage force for each welding process were formulated as a function of the principal factors proposed. With the predictive equations, the buckling distortion at the thin panel welded structure with welding process was evaluated and compared using nonlinear buckling analysis and STEM(simplified thermo elastic method). Based on the results, the best way to prevent the buckling distortion at the given welded panel structures was identified as an intermittent FCA welding.