• Title/Summary/Keyword: thermistor

Search Result 220, Processing Time 0.033 seconds

Preparation and PTC properties of thin films $BaTiO_3$ ceramic system using RF/DC magnetron sputtering method (RF/DC 마그네트론 스퍼터법을 이용한 $BaTiO_3$계 세라믹 박막의 제조와 PTC특성)

  • 박춘배;송민종;김태완;강도열
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 1995
  • PTCR(Positive Temperature Coefficient of Resistivity) thermistor in thin film BaTiO$_{3}$ system was prepared by using radio frequency(13.56 MHz) and DC magnetron sputter equipment. Polycrystalline, surface structure, and R-T(Resistivity-Temperature) characteristics of the specimens were measured by X-ray diffraction(D-Max3, Rigaku, Japan), SEM(Scanning Electron Microscopy: M.JSM84 01, Japan), and insulation resistance measuring system (Keithley 719), respectively. Thin films characteristics of the thermistor showed different properties depending on the substrate even with the same sputtering condition. The thin film formed on the A1$_{2}$O$_{3}$ substrate showed a good crystalline and a low resistivity at below curie point. However, the thin films prepared on slide glass and Si wafer were amorphous. The thicknesses of the three samples prepared under the same process conditions were 700[.angs.], 637.75[.angs.], and 715[.angs.], respectively.

  • PDF

The Effects of Ca Addition on Electrical Properties of PTCR Thermistor (Ca 첨가가 PTCR 써미스터의 전기적 특성에 미치는 영향)

  • Kim, Byung-Su;Kim, Jong-Taek;Kim, Chul-Soo;Kim, Yong-Huck;Lee, Duck-Chool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.121-127
    • /
    • 1998
  • In this paper, to develop PTCR(Positive Temperature Coefficient of Resistance) thermistor with high withstanding voltage, Ca were added to. the compositions of $(Ba_{0.9165-X}-Sr_{0.08}-Ca_X-Y_{0.0035})TiO_3+MnO_2$ 0.02wt%+$SiO_2$ 0.5wt%. the effects of Ca additions were researched according the increasing of Ca from 0[mol%] to 20[mol%], and the electrical properties were investigated. As increasing Ca additions from 0[mol%] to 20[mol%], the grain size of the specimens was reduced from 11.1[${\mu}m$] to 6.15[${\mu}m$], and also the sintered density was reduced from 5.43[$g/cm^3$] to 5.05[$g/cm^3$] and their the breakdown voltages were increased from 163[V/mm] to 232[V/mm]. It is shown that the breakdown voltage was increased with amount of Ca additions.

  • PDF

Hardware temperature compensation technique for hot-wire anemometer by using photoconductive cell (광도전성저항을 이용한 열선유속계의 하드웨어적 온도보상에 관한 연구)

  • Lee, Sin-Pyo;Go, Sang-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3666-3675
    • /
    • 1996
  • A new hardware temperature compensation method for hot-wire anemometer is investigated and an analog compensating circuit is proposed in this article. A photoconductive cell is introduced here as a variable resistor in the anemometer bridge and the linearized output of a thermistor is used to monitor the input of the photoconductive cell. In contrast with the conventional method, any type of temperature sensor can be used for compensation if once the output of thermometer varies linearly with temperature. So the present technique can diversify the compensating means from a conventional passive compensating resistance to currently available thermometers. Because the resistance of a photoconductive cell can be set precisely by adopting a stabilizing circuit whose operation is based on the integration function of the operational amplifier, the accuracy of compensation can be enhanced. As an example of linearized thermometer, thermistor sensor whose output is linearized by a series resistor was used to monitor the fluid temperature variation. Validation experiment is conducted in the temperature ranged from 30 deg. C to 60 deg. C and the velocity up to 40 m/s. It is found that the present technique can be adopted as a compensating circuit for anemometer and hot-wire type airflow meter.

Thermal Property Measurement of Swine Atrium

  • Oh, Jung-Hwan;Kim, Jee-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.343-347
    • /
    • 2008
  • Thermal conductivity, thermal diffusivity were measured in the atrium of a swine heart. Radiofrequency (RF) catheter ablation in an atrium has rapidly emerged at the treatment of symptomatic reentrant arrhythmia associated with accessory pathway or Atrioventricular (AV) node conduction. The thermal properties of an atrium are definitely necessary for these treatments because, in thermal treatments, conductivity and diffusivity are significant factors in the relationship between the applied RF power and the resulting atrium temperature rise. Thermal properties were measured using a self-heated thermistor probe. Thermistor probes were inserted into the tissue of interest and were used to supply heat within the tissue as well as to monitor the temperature rise in the tissue. The measurements were performed at temperatures of 25, 37, $50^{\circ}C$. Atrium thermal conductivity ranged from 5.17$\pm$0.12 mW/cm$^{\circ}C$ at $25^{\circ}C$ to 5.33$\pm$0.08 mW/cm$^{\circ}C$ at $37^{\circ}C$. Atrium thermal diffusivity ranged from 0.00132$\pm$0.00007$cm^2$/sec at $25^{\circ}C$ to 0.00138$\pm$0.00003 $cm^2$/sec at $50^{\circ}C$. This paper also present the thermal property comparison of both chambers of a heart (ventricle and atria).

Fabrication of SMD Type PTC Thermistor with Multilayer Structure

  • Kim, Yong-Hyuk;Lee, Duck-Cuool
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • PTC thermistors with multilayer structure were fabricated by internal electrode bonding technique in order to realize low resistance. MLPTC (Multilayer Positive Temperature Coefficient) possess various features, such as small size, low resistivity and large current. We describe the effect of additives on the PTC characteristics, voltage - current characteristics, temperature dependence of resistance and complex impedance spectra as a function of frequency range 100 Hz to 13MHz to determine grain boundary resistance. It was found that MLPTC thermistor has both highly nonlinear effects of temperature dependent resistance and voltage dependent current behaviors, which act as passive element with self-repair mechanisms. Decrease of room temperature resistance with increasing the number of layers was demonstrated to be a grain boundary effect. Switching characteristics of current were caused by heat capacity of PTC thermistor with multilayer structure. Switching times are lengthened by increasing the number of layers.

  • PDF

The Fabrication of Mulilayer Chip NTC Thermistor for Mobile Communication Telephone (이동통신 단말기에 이용되는 적층 칩 써미스터 제작)

  • Yoon, Jung-Rag;Lee, Heon-Yong;Kim, Jee-Gyun;Lee, Suk-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1794-1796
    • /
    • 2000
  • Oxides of the form $Mn_{3}O_4$-$Co_{3}O_4$-NiO present properties that make them useful as multilayer chip NTC thermistor for mobile communication telephone. When $Mn_{2}Ni_{x}CO_{1-x}O_4$ composition with the X = 0.12$\sim$0.24 at sintered temperature 1250$^{\circ}C$, resistivity and B-constant were 300$\sim$450[${\Omega}-cm$] and 3250$\sim$3450, respectively. Multilayer chip NTC(Negative Temperature Coefficient) resistor were fabricated with 4 layer by a conventional multilayer capacitor techniques, using 100 pd paste as internal electrode and $Mn_{2}Ni_{0.20}CO_{0.8}O_4$ composition as NTC materials. In particular, resistance change ratio (${\Delta}R$), the important factor for reliability, varied within $\pm$3%, indicating the compositions of multilayer chip NTC thermistor products could be available for mobile communication telephone.

  • PDF

The Electrical Characteristics of the Grain Boundary in a $BaTiO_{3}$ PTC Thermistor ($BaTiO_{3}$ PTC 서미스터 입계의 전기적인 특성)

  • Kwon, Hyuk-Joo;Lee, Jae-Sung;Lee, Yong-Soo;Lee, Dong-Kee;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 1992
  • PTC thermistor has been fabricated with as-received $BaTiO_{3}$ powder and its electrical properties were investigated. The resistivity of the PTC thermistor was measured at $20^{\circ}C$ intervals from $20^{\circ}C$ to $200^{\circ}C$. The electrical characteristics of the PTC thermistor are determined by the ac complex impedance analysis. The average grain size measured with a scanning electron microscope increased from $3.8{\mu}m$ to $8.8{\mu}m$ with increasing sintering temperature between $1280^{\circ}C$ and $1400^{\circ}C$. The maximum resistivity jump was $4{\times}10^{5}$. The bulk resistivity of the thermistor sintered above $1340^{\circ}C$ decreased with increasing temperature of the measurement. The grain boundary resistance increased exponentially, the grain boundary capacitance decreased, and the built-in potential at the grain boundary increased with increasing temperature of the measurement. The charge densiy at the grain boundary increased with increasing temperature up to $110^{\circ}C$, which leveled off with further increase in measuring temperature.

  • PDF