• Title/Summary/Keyword: thermal-degradation

Search Result 1,115, Processing Time 0.068 seconds

A Study on Electricity Properties of Polyethylene Terephthalate Film due to Thermally Degradation (열 열화에 의한 폴리에틸렌 테레프탈레이트 필름의 전기 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.693-698
    • /
    • 2017
  • In this study, the thermal degradation properties of polyethylene terephthalate film has been examined by the capacitance, Tan ${\delta}$, thermography, FTIR, and SEM results at temperatures of $90{\sim}170^{\circ}C$ and frequencies of 0.3~3,000 kHz. It was found that the capacitance decreased with increasing thermal imaging temperature, probably caused by weakening of chemical bond with increasing temperature. Tan ${\delta}$ decreased upon increasing temperature from $90^{\circ}C$ to $170^{\circ}C$, probably due to the molecular motion of COOH radical or OH radical. The FT-IR measurement reveals that no structural change of the material occurs upon thermal radiation. The SEM measurement shows that the material is stabilized by thermal decomposition with increasing temperature; however, excessive thermal degradation obstructs the stabilization of the material.

Thermal Degradation Pattern of Tocopherols on Heating without Oxygen in a Model Food System (모델식품계에서 무산소 가열시 토코페롤의 열분해 패턴)

  • 정혜영
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.6
    • /
    • pp.635-639
    • /
    • 1998
  • The thermal degradation pattern of $\alpha$-, ${\gamma}$-and $\delta$-tocopherols in glycerol was investigated during heating at 100~25$0^{\circ}C$ for 5-60 min in the absence of oxyge. The tocopherols and thermally decomposed products were separated by HPLC with a reversed phase $\mu$-Bondapak C18-column. The degradation pattern of $\alpha$-tocopherol during the heating in the absence of oxygen was different from those of ${\gamma}$-and $\delta$-tocopherols. But the degradation patterns of ${\gamma}$-and $\delta$-tocopherols were similar to each other. The residual content of $\alpha$-tocopherol during the heating in the absence of oxygen decreased to the range 12~65% and those of ${\gamma}$-and $\delta$-tocopherols decreased to the range 4~96%. The thermal degradation of tocopherols in the absence of oxygen was less than that in the presence of oxygen.

  • PDF

Studies on Polyacrylonitrile (2) Thermal Degradation of Polyacrylonitrile (폴리아크릴로니트릴에 關한 硏究 (第 2 報) 폴리아크릴로니트릴의 熱分解에 關하여)

  • ICK SAM NOH
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.70-76
    • /
    • 1967
  • Structural changes attending polyacrylonitrile(PAN) upon heating and treating with nucleophilic reagents have been studied for some time and a few authors have studied on the thermal degradation, particularly on the characterization of degradation products in PAN. It is the purpose of this paper to report the kinetic study on the thermal degradation above $250^{\circ}C$ and make some suggestions as to the degradation process and mechanism in PAN. The degradation process in PAN is considered that three reactions are combined in two steps. Random chain scission accompanying the naphthylidine-type ring formation is the first step and the degradation of naphthylidine-type ring occurred as the next step. The reactions in the first step are competitive so that the maximum weight loss on pyrolysis of PAN, under such a condition that the degradation of naphthylidine-type ring is negligible, is depended on the relative reaction rate of these two competitive reactions.

  • PDF

Electrical Degradation of Stator Bars for Large Turbine Generator after 1000 Thermal Cycles (대형 터빈 발전기용 고정자 권선의 1000 thermal cycle 후 전기적 특성 변화)

  • Kang, Myung-Guk;Kim, Tae-Hee;Lee, Jai-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.975-976
    • /
    • 2007
  • Thermal and mechanical stresses, caused by repetitive start and stop and load fluctuation during long time operation, on winding stator bars are one of the main causes for electrical degradation of insulating materials. To understand the degradation process, we manufactured bar specimens with the same processes that make generator winding stator bars and the specimens were subjected to various degrees of thermal cycling. Measurements of the insulation properties, such as dissipation factor, tip-up and partial discharge, for un-aged specimens and for specimens aged by thermal cycling at 50, 100, 250, 500 and 1000 thermal cycles were performed. Finally all specimens were tested to obtain electrical breakdown voltages. In this paper we present the data and electrical degradation analysis results obtained during this program.

  • PDF

A Study of Upgrading of Pyrolysis Wax Oil Obtained from Pyrolysis of Mixed Plastic Waste (혼합폐플라스틱 열분해 왁스오일의 고급화 연구)

  • Lee, Kyong-Hwan;Nam, Ki-Yun;Song, Kwang-Sup;Kim, Geug-Tae;Choi, Jeong-Gil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.321-324
    • /
    • 2009
  • Upgrading of pyrolysis wax oil has been conducted in a continuous fixed bed reactor at $450^{\circ}C$, 1hour, LHSV 3.5/h. The catalytic degradation using HZSM-5 catalyst are compared with the thermal degradation and also was studied with a function of experimental variables. The raw pyrolysis wax oil shows relatively high boiling point distribution ranging from around $300^{\circ}C$ to $550^{\circ}C$, which has considerably higher boiling point distribution than that of commercial diesel. The product characteristic from thermal degradation shows a similar trend with that of raw pyrolysis wax oil. This means the thermal degradation of pyrolysis wax oil at high degradation temperature is not sufficiently occurred. On the other hand, the catalytic degradation using HZSM-5 catalyst relative to the thermal degradation shows the high conversion of pyrolysis wax oil to light hydrocarbons. This liquid product shows high gasoline range fraction as around 90% fraction and considerably high aromatic fraction in liquid product. Also, in the catalytic degradation the experimental variable such as catalyst amount and reaction temperature was studied.

  • PDF

A Study on the Insulation Properties for Stator Form-wound Winding by Thermal Degradation Test (가속 열열화 시험에 의한 고정자 형권 코일의 절연특성에 관한 연구)

  • 채승훈;김상걸;오현석;신철기;왕종배;김기준;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.115-118
    • /
    • 2000
  • In case of developing new motor, many examinations was tested to decide a motor efficiency and reliability. To give reliability judgment, traction motor winding insulation was tested by electrical method after appling electrical, heat, mechanical, environmental stress. In this study, stator form-wound winding of traction motor in urban transit E.M.U was tested by accelerative thermal degradation test. Stator form-wound winding was tested on the accelerative degradation composed of heat, vibration, moisture, overvoltage and researched insulation resistance, dielectric loss, partial discharge for insulation degradation properties, evaluated withstand voltage. Degradation temperature was $230[^\circ{C}]$, $250[^\circ{C}]$, $270[^\circ{C}]$, for stator form-wound winding respectively. On the test results of accelerative thermal degradation, insulation properties were relied all temperature until 10 times and expected life was evaluated by the rule of reducing $10[^\circ{C}]$ life into halves. Expected life was 31.8 years. It is guaranteed insulation reliability because of exceeding 25 years life times as considering.

  • PDF

Condensation Prevention Performance Assessment Taking Into Account Thermal Insulation Performance Degradation Due to Aging for Apartment Housing

  • Choi, Doo-Sung;Lee, Myung-Eun
    • KIEAE Journal
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2015
  • Purpose: The current study analyzed trends in thermal insulation performance with aging, and condensation characteristics caused by the former. Method: Thermal insulation and condensation prevention performance of an architecture were assessed using Temperature Difference Ration Inside, or TDRi. Subjects of this quantitative analysis in thermal insulation performance change due to aging included recently constructed apartments and aged apartments older than 40 years. Time series comparison and analysis were conducted to observed changes in the thermal insulation performance and condensation characteristics. Result: Analysis showed that wall insulation performance degraded with aging regardless of fortified insulating material usage or insulating material type, which caused increased danger of condensation. In addition, when fortified insulating material was installed on the connection between the walls, insulation performance degradation was lower compared to cases in which fortified materials were not used. In all cases from 1 to 10, the rate of thermal insulation performance degradation increased after 20 years of aging.

Thermal Stability of Polypropylene-Based Wood Plastic Composites by The Addition of Ammonium Polyphosphate (폴리인산염 첨가에 의한 폴리프로필렌 기반의 Wood Plastic Composites 열안정성)

  • Chun, Sang-Jin;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.682-690
    • /
    • 2014
  • In order to improve the thermal stability of wood plastic composites (WPC), thermal degradation behavior of WPC in this study was investigated by the addition of wood flour and fire retardant after hybridization of wood flour and ammonium polyphosphate (APP) into polypropylene (PP) matrix. Thermal degradation behavior of all formulations was analyzed with thermogravimetric analyzer under nitrogen environment at heating rate of $10^{\circ}C/min$. As the thermal degradation temperature of wood flour is lower than that of PP, char layer formed by the wood flour decreases the speed of heat transfer to PP. In addition, the char layer increases the 2nd thermal degradation temperature and decreases the 2nd thermal degradation speed. The WPC treated with APP increases the 1st and 2nd degradation temperatures. In the case of WPC with high loading level of wood flour, the 1st thermal degradation temperature and 2nd thermal degradation rate were increased by the addition of APP, and then the amount of remnants at high temperature was increased by the increase of the APP loading level. In the case of WPC treated with APP, the amount of the remnants at high temperature was increased with the increase of wood flour content from 10 wt% to 50 wt%, indicating that char formation of the APP and wood flour occurred at the same time, resulting in high thermal stability effect by the increase of wood flour content.

Thermal Degradation of Black Cobalt Solar Selective Coatings (흑색 코발트 태양 선택흡수막의 열퇴화)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.9-15
    • /
    • 2015
  • Black cobalt solar selective coatings were prepared by using an electroplating method. The changes in the optical properties of the black cobalt selective coating due to thermal degradation were analyzed by using the Auger electron spectroscopy (AES) and spectrophotometer. The black cobalt selective coating was prepared on a copper substrate by using a synthesized electrolyte with $CoCl_2$ and KSCN at a current density of ${\sim}0.5A/dm^2$ for 45s ~ 60s. Its optical properties were a solar absorptance (${\alpha}$) of the order of 0.80 ~ 0.84 and a thermal emittance (${\epsilon}$) of 0.01. From the AES depth profile analysis of heated sample, thermal degradation of the black cobalt selective coating heated for 33 hours at temperature of $350^{\circ}C$ occurred primarily due to interdiffusion at interface of cobalt and copper substrate. This results were predictable that the ${\alpha}$ decreases due to the thermal oxidation and diffusion.

Degradation of Thermal Creep by Hydrides of Zr-2/5Nb Pressure Tube (Zr-2.5Nb 압력관의 수소화물에 의한 고온 크리프의 열화거동)

  • Oh, Dong-Joon;Ma, Young-Wha;Yoon, Kee-Bong;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1526-1533
    • /
    • 2006
  • The aim of this research was to confirm the existence of the thermal creep degradation by hydrides of Zr-2.5Nb pressure tube materials. Small punch creep tests were performed to obtain the relationship between a creep displacement and a loading period at $300^{\circ}C$. A creep stress and a creep strain rate were also converted from the previous results. The creep material constants and the creep stress exponents at the different hydride contents were compared. Finally the hydrides of the axial and circumferential section were observed using OM, SEM and TEM. The following conclusions were made: 1) The degradation of the thermal creep by hydrides was existed and it strongly depended on the hydride contents. 2) As the hydride contents were increased, the creep stress exponents (m) were also increased. 3) Even though the hydride was not precipitated in 50 ppm materials at $300^{\circ}C$, the degradation of thermal creep was found. Therefore, it was believed that this phenomenon strongly related to the hydride precipitation at room temperature.