• 제목/요약/키워드: thermal stratification

Search Result 277, Processing Time 0.035 seconds

Analysis on the Circumference Wall Temperature in a Long Horizontal Pipe with Thermal Stratification

  • Ahn, Jang-Sun;Ko, Yong-Sang;Kim, Yu-Hwan;Park, Byeong-Ho;Kim, Eun-Kee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.364-370
    • /
    • 1995
  • The One-dimensional fin model is used to analyze the angular wall temperature variation of long horizontal lines, where stratification could result in top-to-bottom differences in wall temperatures. The top and bottom sections are treated separately and coupled by boundary conditions. The thermal stratification analysis is focused on the effects of the heat transfer rates at the pipe surface. The results show that the heat transfer rate at the pipe surface is the controlling parameter which reduce significantly the temperature difference in pipe circumferential direction. The one-dimensional fin modelling analysis results are verified by comparison with the operating PWR test data. The circumferential temperatures of pipe calculated by one-dimensional fin modelling agree well with the PWR plant test data.

  • PDF

An Investigation of HCCI Combustion Processes of Stratified Charge Mixture Using Rapid Compression Machine (급속압축 장치를 이용한 불균일 예혼합기가 HCCI연소에 미치는 영향에 관한 연구)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • Effect of heterogeneity of combustion chamber has been thought as one of the way to avoid dramatically generating heat in HCCI Combustion. The purpose of this research is to investigate the effect of heterogeneity, especially thermal stratification and fuel strength stratification on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in Combustion Chamber of Rapid Compression Machine with 3 Kinds of pre-mixture has different properties. The stratified charge mixture is adiabatic compressed and on that process, in cylinder gas pressure and two-dimensional chemiluminescence images are measured and analyzed.

Stratification and DO Concentration Changes in Chinhae-Masan Bay (진해ㆍ마산만의 성층화 및 DO 농도변화)

  • 조홍연;채장원;전시영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.295-307
    • /
    • 2002
  • Water temperature, salinity, and DO concentration were measured vertically in the Chinhae-Masan Bay over the course of 1 year. The characteristics of the stratification were analysed using the measured water temperature and salinity data. The vertical DO concentration changes were also analysed through consideration of the degree of stratification and the level of sediment pollution. The results of the analyses show that the thermal stratification appears just before April and disappears after October. The salinity differences between the surface and the bottom were 3.9(equation omitted), 9.3 (equation omitted), 4.3(equation omitted) in April, August, and October, respectively. The DO concentration change averaged over water depth was 2.6(mg/L) in April; 8.3(mg/L) in June: 5.9(mg/L) in August; 7.2(mg/L) in September; and 4.4(mg/L) in October. The DO concentration changes were closely related to the levels of contamination and also to the effect of the mass-transfer inhibition between the surface and bottom layers due to the thermal and density stratification.

Feedwater Flowrate Estimation Based on the Two-step De-noising Using the Wavelet Analysis and an Autoassociative Neural Network

  • Gyunyoung Heo;Park, Seong-Soo;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.192-201
    • /
    • 1999
  • This paper proposes an improved signal processing strategy for accurate feedwater flowrate estimation in nuclear power plants. It is generally known that ∼2% thermal power errors occur due to fouling Phenomena in feedwater flowmeters. In the strategy Proposed, the noises included in feedwater flowrate signal are classified into rapidly varying noises and gradually varying noises according to the characteristics in a frequency domain. The estimation precision is enhanced by introducing a low pass filter with the wavelet analysis against rapidly varying noises, and an autoassociative neural network which takes charge of the correction of only gradually varying noises. The modified multivariate stratification sampling using the concept of time stratification and MAXIMIN criteria is developed to overcome the shortcoming of a general random sampling. In addition the multi-stage robust training method is developed to increase the quality and reliability of training signals. Some validations using the simulated data from a micro-simulator were carried out. In the validation tests, the proposed methodology removed both rapidly varying noises and gradually varying noises respectively in each de-noising step, and 5.54% root mean square errors of initial noisy signals were decreased to 0.674% after de-noising. These results indicate that it is possible to estimate the reactor thermal power more elaborately by adopting this strategy.

  • PDF

Effect of Thermal Stratification for Reducing Pressure Rise Rate in HCCI Combustion Based on Multi-zone Modeling (Multi Zone Modeling을 이용한 온도 성층화의 효과를 갖는 예혼합압축자기착화엔진의 압력상승률 저감에 대한 모사)

  • Kwon, O-Seok;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.32-39
    • /
    • 2009
  • The HCCI engine is a next generation engine, with high efficiency and low emissions. The engine may be an alternative to SI and DI engines; however, HCCI's operating range is limited by an excessive rate of pressure rise during combustion and the resulting engine knock in high-load. The purpose of this study was to gain a understanding of the effect of only initial temperature and thermal stratification for reducing the pressure-rise rate in HCCI combustion. And we confirmed characteristics of combustion, knocking and emissions. The engine was fueled with Di-Methyl Ether. The computations were conducted using both a single-zone model and a multi-zone model by CHEMKIN and modified SENKIN.

Environmental Fatigue Evaluation for Thermal Stratification Piping of Nuclear Power Plants (열성층을 포함하는 원자력발전소 배관의 환경피로평가)

  • Kim, Taesoon;Kim, Kyuhyung
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.164-169
    • /
    • 2018
  • A detailed fatigue evaluation procedure was developed to mitigate the excessive conservativeness of the conventional environmental fatigue evaluation method for the pressurizer spray line elbow of domestic new nuclear power plants. The pressurizer spray line is made of austenitic stainless steel, which is relatively sensitive to the environmentally assisted fatigue, and has a low degree of design margin in terms of environmentally assisted fatigue due to the thermal stratification phenomenon on the pipe cross section as a whole or locally. In this study, to meet the environmental fatigue design requirements of the pressurizer spray line elbow, the new environmental fatigue evaluation has been performed, which used the ASME Code NB-3200-based detailed fatigue analysis and the environmental fatigue correction factor instead of the existing NB-3600 evaluation method. As a result, the design requirements for environmentally assisted fatigue were met in all parts of the pressurizer spray line elbow including the fatigue weakened zones by thermal stratification.

Prediction of the Viable Operating Range of DME Heel Engine Using Thermal Stratification Based on Numerical Analysis (온도 성층화를 이용한 DME HCCI 엔진의 운전 영역 확장에 관한 수치해석 연구)

  • Jeong, Dong-Won;Kwon, O-Seok;Back, Young-Soon;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.344-351
    • /
    • 2009
  • A multi-zone model was used to predict the operating range of homogeneous charge compression ignition (HCCI) engine, the boundaries of the operating range were determined by knock (presented by ring intensity), misfire (presented by sensitivity of indicated mean effective pressure to the initial temperature). A HCCI engine fueled with Di-Methyl Ether (DME) was simulated under different initial temperature and equivalence ratios, and the operating range was well produced by the model. Furthermore, the model was applied to develop the operating range for thermal stratification in the preceding condition of initial temperature and equivalence ratios. The computations were conducted using Senkin application of the CHEMKINII kinetics rate code.

Thermal Stratification Effects Near an Interface by Horizontal Inflow of Cold Water in Thermal Storage Tank (냉수가 수평유입되는 열저장탱크의 중간 경계면 부근에서의 열성층 효과)

  • Hwang, Sung-Il;Pak, Ee-Tong
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.46-56
    • /
    • 1988
  • This investigation concerns thermal stratification of the water due to the temperature difference (${\Delta}T=T_{\infty}-T_i$) between the mean temperature of the water in the test tank (1m wide, 1m high, 2.1m long) and the temperature of the inflow water into the tank; flow rate of circulating water and height of the sink diffuser in the test tank. The additional objectives was to observe a stratification phenomena near an interface by measuring the velosities and the temperature difference and investigate an availabilities of the better effective hot water through establishing thermocline near an interface around the bottom of the tank. Following results were obtained through the experiments. 1. When the flow rate was constant and the temperature difference (${\Delta}T=T_{\infty}-T_i$) between the mean temperature of the flow in the test tank and the temperature of the inflow water increased by 5.6, 9.5, 13.5($^{\circ}C$), obtained the better effective advantage of hot water and the stress near an interface increased gradually. 2. When the ${\Delta}T=T_{\infty}-T_i$ was constant and flow rate increased by 4.0, 4.8, 6.4, 8.0 (LPM), obtained the better effective advent age of hot water and the mean stress near an interface increased gradually. 3. When the height of the sink diffuser was 25cm from tank bottom in comparison with 50cm, obtained the better effective advantage of hot water and the mean stress near an interface increased.

  • PDF

Investigation of transport of radionuclide in a thermal stratification test facility using radiotracer technique

  • Pant, Harish Jagat;Goswami, Sunil;Chafle, Sunil B.;Sharma, Vijay Kumar;Kotak, Vimal;Shukla, Vikram;Mishra, Amitanshu;Gohel, Nilesh C.;Bhattacharya, Sujay
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1449-1455
    • /
    • 2022
  • A radiotracer investigation was carried out in a Thermal Stratification Test Facility (TSTF) with objectives of investigating the dispersion and diffusion of radionuclide and effectiveness of the thermocline to minimize the radionuclide content in the hot water layer. Technetium-99m (99mTc) as sodium pertechnetate was used as a radiotracer in the investigation. Qualitative analysis showed that a thermocline is formed within the TSTF and is effective in preventing the transport of radionuclide from bottom section to the top section of the facility. It was found that the radiotracer injected at the bottom of the pool took about 17.4 h to disperse from bottom to the top of the facility. The results of the investigation helped in understanding the effectiveness of hot water layer and thus to minimize the pool top radiation levels.