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Abstract

This paper proposes an improved signal processing strategy for accurate feedwater flowrate
estimation in nuclear power plants. It is generally known that ~2% thermal power errors occur
due to fouling phenomena in feedwater flowmeters. In the strategy proposed, the noises
included in feedwater flowrate signal are classified into rapidly varying noises and gradually
varying noises according to the characteristics in a frequency domain. The estimation precision
is enhanced by introducing a low pass filter with the wavelet analysis against rapidly varying
noises, and an autoassociative neural network which takes charge of the correction of only
gradually varying noises. The modified multivariate stratification sampling using the concept of
time stratification and MAXIMIN criteria is developed to overcome the shortcoming of a general
random sampling. In addition the multi-stage robust training method is developed to increase
the quality and reliability of training signals. Some validations using the simulated data from a
micro-simulator were carried out. In the validation tests, the proposed methodology removed
both rapidly varying noises and gradually varying noises respectively in each de-noising step,
and 5.54% root mean square errors of initial noisy signals were decreased to 0.674% after de-
noising. These results indicate that it is possible to estimate the reactor thermal power more

elaborately by adopting this strategy.
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1. Introduction thermal power, it has been known that the

method based upon a heat balance within a steam

The thermal efficiency in a nuclear power generator is the most accurate among the
plant{NPP) is determined by the ratio of generator methods proposed. The role of accurate reactor
output power to reactor thermal power. Although thermal power measurement can be considered
there are a lot of methods to measure reactor from two aspects. From an economic side,

192



Feedwater Flowrate Estimation Based on the Two-step De-noising Using --- G.Y. Heo, et al 193

overestimating reactor power results in under-
utilization of reactor fuel or failure to achieve
burnup targets. But the more important point is
the case where power is underestimated. From a
safety side, the operational margin and safety
margin could be threatened, if power is
underestimated.

Many parameters should be measured for the
calculation of reactor thermal power. One of the
most inaccurate measurements among them is
secondary feedwater flowrate because fouling
phenomena may occur on the converging section
of a flowmeter[1]. The over prediction of flowrate
due to fouling may result in the overestimation of
reactor thermal power. In actual NPPs, reactor
thermal power may be derated by ~2% according
to the related researches. The hardware-based
solutions such as periodic mechanical/chemical
cleaning, use of an ultrasonic flow meter, or
applying an anti-fouling coating on a venturi
meter have been proposed to reduce fouling
phenomena. However recently there has been
remarkable progress in the development of the
software-based techniques which are easy to
implement, relatively low in cost, and compatible
with the existing facilities. As the one of the
conventional techniques, drift correction
coefficients from operating experiences have
been used to correct a gradually varying noise.
Because these deterministic approaches are not
able to have adaptation capability according to
operating condition, there is limitation to correct
the noises accurately. Effective software-based
methods should have not only high precision to
minimize estimation errors but also adaptation
capability to apply to the various states of a plant.
For these reasons, many neural networks based
on multi-layer perceptrons[2]-[5] have been
proposed, but the simple neural networks could
not achieve required precision. Therefore
autoassociative neural networks(AANN) with

extraordinary training methods[6-7], or
multivariate state estimation techniques[8] have
been proposed, which have the structural
characteristics to satisfy enough precision. This
paper proposes a strategy to improve the
precision of feedwater flowrate estimation on the
basis of the separation and removal of noises
using the wavelet analysis and an AANN with a
robust training method.

Section 1l of this paper analyzes fouling
phenomena and their signal properties. Section Il
proposes the strategies to improve flowrate
measurement accuracy. The validation with the
simulated data from a micro-simulator is
demonstrated in Section IV. Finally conclusions
are presented in Section V.

2. Analysis of Fouling Phenomena

2.1. Effect of Feedwater Flowrate
Measurement Errors

Because reactor power calculated by means of
heat balance is used for the correction of the
power calculation using turbine impulse pressure
or nuclear instrumentation system, the accuracy
of feedwater measurement is important from the
economical point of view. Reactor power is
indirectly calculated using the result of heat
balance in a reactor and other heat gain/loss
through letdown system, charging system,
pressurizer heater/spray, or piping. Therefore
reactor power can be roughly represented as

follows:

P{h :f(fFW’fST’fLD’fCH’hFW’hST’hLD’hCH’hother)’ (1)

where
P, = reactor thermal power,
few = secondary feedwater flowrate,

fsr = secondary steam flowrate,
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fip = reactor coolant system(RCS) letdown flowrate,
fen = RCS charging flowrate,

hry = feedwater enthalpy,

hsr = steam enthalpy,

hip = letdown flow enthalpy,

hey = charging flow enthalpy,

Roher = unmeasured heat gain or loss.

If a plant is in a steady-state operation and
other parameters don’ t have any errors, the
absolute error E, due to feedwater measurement
errors can be represented by Eqn. (2).

oP,
N AN

One of the main reasons of feedwater

: (2

measurement errors is fouling phenomena. 5%
errors in feedwater measurement can cause
nearly 3% errors in the power calculation for a
1000MWe pressurized water reactor by Eqn. (2).

2.2. Noise Characteristics of an
Obstruction Flowmeter

The most widely used flowmetering principle is
to use a fixed-area flow restriction of some type in
the pipe of duct carrying fluid considering its
accuracy, applicability and moderateness though
there are many kinds of flowmeters[9]. This flow
restriction causes a pressure drop according to
the flowrate, thus measurement of the pressure
drop allows flowrate measurement. Obstruction
flowmeters are divided into several kinds
according to its shape of a plate which makes a
pressure drop, for example, orifice, flow nozzle
and venturi tube.

Fouling phenomena are the gradual stochastic
process resulting from corrosion product
deposition and dissolution, which appear on the
converging section of an obstruction flowmeter
[10]. Fouling phenomena, which depend on

material properties and operating condition, result

in the overestimation of feedwater flowrate.
Signal drift by fouling phenomena begins after a
few months if a clean flowmeter is placed. Raw
flow signals can be classified into the three
following categories according to their time-
dependent characteristics:
» Gradually varying noise : distortion due to
fouling phenomena, that is sensor drift,
* Rapidly varying noise : short-term distortions
except gradually varying noises such as thermal
effects, and
* Noiseless flow signal : clean signal without any

gradually varying and rapidly varying noises.

The rapidly varying noises can be randomly
come out in all kinds of measurement systems
and they have no interrelation with any other
operating variables. So it is impossible to
remove the rapidly varying noises using
techniques based on interrelation. On the other
hand, a gradually varying noise is the unique
characteristic which appears in only obstruction
flowmeters and this has nothing to do with the
noises of other detectors. This characteristic
makes it possible that a gradually varying noise
can be corrected by interrelation among
operating variables and time.

3. Strategy for Improving Flowrate
Measurement Accuracy

There have been many researches to estimate
flowrate measurement using neural networks to
utilize their adaptation capability and nonlinear
modeling. Generally just a single neural network is
used to remove the distortions of flowrate
measurement in conventional researches.
However in those approaches there are two weak
points in correcting flowrate measurement
accurately. The one is that the magnitude of
rapidly varying noises is comparable to that of
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Fig. 1. The Comparison of Feedwater Flowrate
Estimation Between the Conventional
Approach and the Two-step De-noising
Method in (a) Training Mode and (b)
Testing Mode

gradually varying noises so the neural networks
which are trained by using discrete training data
can not distinguish the difference. And the other
is that if neural networks are trained until they
can eliminate rapidly varying noises, then the
results of the training may be an increase in
overfitting rather than an increase in accuracy
because there is no interrelation among the
rapidly varying noises of operating parameters
as stated above. Therefore signal processing
schemes should be separately made by the
relevant methods for each noise as shown in
Fig. 1.

3.1. Signal Preprocessing Using the
Wavelet Analysis

Signal preprocessing helps a neural network
correct gradually varying noises and prevent
overfitting. The important part in a signal is the
low frequency content which gives the signal its
identity. Thus signal preprocessing or de-noising
means a low frequency pass filtering.

Traditionally the Fourier analysis is the
extremely useful technique but has an important
drawback, which is that time information is lost in
a frequency domain. Therefore the wavelet
analysis is very useful when transitory signals with
the specified frequency should be detected in a
time domain. In the wavelet analysis a time-scale
region rather than a time-frequency region is used
for a variable windowing technique. The variable
windowing technique can allow longer time
intervals when the low frequency is important and
shorter intervals when the high frequency is
necessary. In addition the wavelet analysis is
based on irregular and asymmetric base functions,
whish is different from the Fourier analysis on the
basis of sinusoidal functions[11].

The de-noising procedures using the wavelet
analysis are composed of three steps:

« Wavelet decomposition : After the selection of
a wavelet and a level, a downsampling is
accomplished. The downsampling makes an
original signal separate into high frequency part
and low frequency part. The downsampling is
iterated according to the specified level.

« Applying threshold : The selection and
application of the threshold for the generation
of the detail coefficients are carried out.

- Wavelet reconstruction : This is also called the
inverse wavelet transform. The decomposed
signal is synthesized on the basis of the original
approximation coefficients and the modified

detail coefficients.
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(a) Raw plant signals
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Fig. 2. The Possible Sampling Region (shading area) for (a) Random Variables and (b) Raw Plant Signals

3.2. Acquisition of a Training Set Using
Modified Multivariate Stratification
Sampling

The sampling of training sets would be
accomplished after determining the input
parameters to be used in training neural networks.
Typically, samples are collected on a fixed
schedule based on random sampling theory.
However, random sampling is difficult to provide a
balance of samples and to economically construct
training sets. Generally it is known that Latin
hypercube sampling(LHS) is one of the most
effective sampling methods due to its nonlinear
capture capability and parsimony characteristics
but is not applicable to raw signals coupled by time
and physical relations because the stratification is
done according to the area of the probability
distribution in LHS. Fig. 2 shows the possible

sampling region for both random variables and
raw plant signals.

For this reason a modified multivariate
stratification sampling was developed in this study
on the basis of a stratified time sequence concept.
The modified multivariate stratification sampling
is a kind of LHS, which can be applied to the raw
plant signals. In the modified multivariate
stratification sampling, the modified stratification
concept and the MAXIMIN criteria[l12] in
conventional LHS are adopted to select optimal
samples from raw plant signals in a possible
sampling region. The stratification is
accomplished along the time sequence, and the
inter-distance between variables is calculated
according to the time sequence which is randomly
selected for each stratum to satisfy the MAXIMIN

criteria.
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Fig. 3. The Architecture of an Ordinary
Autoassociative Neural Network

3.3. Multi-stage Robust Training in an
Autoassociative Neural Network

There have been many techniques to remove
noises using neural networks. The de-noising
techniques based on the principal component
analysis have the capabilities of the decision of
degradation type as well as the correction of signal
drift. In general, the principal components contain
the desired information without noises, therefore
the extraction of the principal components among
signals is the main objective of de-noising and can
facilitate various multivariate analysis such as
signal validation or fault detection{13]. It is
worthwhile to notice an AANN from the viewpoint
of nonlinear principal component analysis. The
architecture of an ordinary AANN is shown in Fig.
3.

The AANN has five layers: input/output layer,
mapping/demapping layer and bottleneck layer.
The AANN can carry out the principal component
analysis using the mapping/demapping layer to
which nonlinear transfer function is applied(14].
The previous studies based on robust training
methodology adding random noises have shown

the good capabilities correcting signal drift but is

I Specific time sequence I

Error sequences I
zh-e
= AANN

Feochvnt:

Flowrate
Signal I +@  Tpotlayer
Signal 1T

Fig. 4. The Concept of the Multi-stage Robust
Training Method

difficult to guarantee the high precision. In this
study, the multi-stage robust training method was
developed on the fact that the AANN only
corrects gradually varying noises by the assistance
of signal preprocessing using wavelet in the two-
step de-noising method. The concept of the multi-

stage robust training method is shown in Fig. 4.
The basic concept of the multi-stage robust

training is based on the fact that an AANN can
recall using only trained samples. Since it is
assumed that signals except the feedwater flowrate
signal are not gradually corrupted, the training set
reconstruction algorithm to apply the multi-stage
robust training method is implemented as follows:

1. Create an original training set, p by N matrix
from the result of the modified multivariate
stratification sampling, where p is the number
of input parameters, N is the number of
samples over the entire input space.

2. Let s.. be the ascending ordered error sequence
between the interested intervals. For example,
for the feedwater flowrate measurement errors
to represent the errors less than 5%, we can
define the error sequence, s, = {0, 0.01, 0.02,
0.03, 0.04, 0.05}.

3. For each j, where j = 1, 2, --- , N, and for i*
that is the feedwater flowrate signal, expand x;-
to x; X {1+s). In this case, preserve any other
signal elements x; as the original state where i
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Table 1. The Comparison of the Accumulated Errors According to the Sampling Methodology

Modified multivariate

Number of Samples stratification sampling Random sampling
Accu. value Mean Accu. Value Mean
50 2578.2 51.56 2763.4 55.26
100 10929.1 109.3 11193.8 111.9
150 24617.0 164.1 24920.9 166.1
200 45289.4 226.4 45603.3 228.0

=1,2,...,p,i%i.

4. Let N be the new number of samples, where
N’ =NxLength of the error sequence, then
reconstruct p by N' matrix for the multi-stage
robust training.

5. The target set is defined as the original state, p
by N matrix.

In this multi-stage robust training, the AANN is
trained stage by stage for the error sequence that
may occur over the entire input space. The
accuracy of the AANN is dependent on the
fineness of the error sequence.

4. Test Results

The validation of the proposed methodology
was carried out using the data from the micro-
simulator of Kori nuclear unit 2[15]. To simulate a
steady-state operation, the normal turbine load
change mode which uses the ramp input from
—5% per minute to +5% per minute was selected.
Nearly 4000 data points were acquired, and 2500
points among them were used for training and the
others for testing.

The variables which have something to do with
controlling feedwater flowrate were selected as the
input of the AANN: feedwater flowrate, steam
flowrate, turbine first stage impulse pressure and
steam generator narrow range level. All the signals
were normalized from 0.2 to 0.8 for the
performance of the AANN. There are no gradually

varying noises in the training parameters so it is
necessary to model only rapidly varying noises. To
model rapidly varying noises, random number
generator that has maximum 2% normal
distribution with zero mean and one variance was
used. The modeling of the gradually varying noise
is only applied to the feedwater flowrate signal of
the testing parameters. A linearly varying noise of
maximum 4% was added to the feedwater flowrate
signal. The configuration of wavelets to remove
the rapidly varying noises was the level 5,
Daubechies family wavelet. Fig. 5 shows the
results of the rapidly varying noise removal for
feedwater flowrate signal in the training set.

To compare the sampling performance, the data
from 50 to 200 were sampled using the random
sampling and the modified multivariate
stratification sampling respectively. Table 1
represents the accumulated errors between two
methodologies. The accumulated mean error is
defined as Eqn. (3).

N
ZI Di—p; l
. 3 o
acc N 4

where
p: : ith input parameter,
N :the number of samples over the entire
training set.
Considering training time, the only 50 data
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Fig. 5. The Signal Preprocessing Results for the
Feedwater Flowrate Signal in the Training
Set

sampled using the modified multivariate
stratification sampling were used as a training set.
The sampled data were reconstructed according to
the multi-stage robust training algorithm using the
error sequence s, = {0.00, 0.01, 0.02, 0.03,
0.04}. The AANN to correct the gradually varying
noise has 5-layer symmetric configuration with 4-
20-3-20-4 nodes, and was trained using
Levenberg-Marquardt algorithm for the training
efficiency[16].

The first figure in Fig. 6 shows the results of
rapidly varying noise removal and the second
shows that of gradually varying noise removal in
each de-noising step. In the results of the wavelet
analysis, the filtered signal has similar waveform
with the noisy signal to which the gradually
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Fig. 6. Plots of the Testing Results in Each De-
noising Step

varying noises are added because the rapidly
varying noises are removed through the wavelet
transform. This indicates that the AANN reduces
just the gradually varying noises. Also the
corrected signal in the results using the AANN has
similar waveform with the original simulated signal
because the gradually varying noises are removed
by the AANN. Table 2 represents the statistical
comparison between the noisy signals and the
corrected signals.

When errors are defined as the deviation
between the noiseless signals and the signals
which are output from the AANN, the root mean
square errors was reduced from 5.54% to
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Table 2. The Statistical Results of the Two-step
De-noising Method

Noisy signals

o . Corrected
(original simulated signal sianals
1
+all kinds of noises) g
E
Mean Error 1.01x10? 1.59% 103
{absolute value)
Standard
ancar 545x 107 6.55% 10
Deviation
Root M
oot Mean 5.54x 10° 6.74%10°

Square Error

0.674%. The signal outputs from the two-step de-
noising method have lower standard deviation and
root mean square errors. Therefore the two-step
de-noising method with the multi-stage robust
training can adequately preserve the reliability of
the training sets from the rapidly varying noises
and provide an accurate correction capability for
the gradually varying noises.

5. Conclusions

Though neural networks are considered a good
solution for modeling unknown nonlinear
functions, they are not easily incorporated in the
fields that require high accuracy due to some
casual elements such as the use of random
numbers for the robust training or the overfitting
phenomena. The basic concept of the proposed
two-step de-noising method with multi-stage
robust training is to assign roles that are suitable to
the neural networks, and to find other solutions for
the weakness of neural networks.

Enhancing the quality of the training sets is the
essential point for solving the weakness of neural
networks. This is because neural networks can
produce results based on the only sets that are
taught in a training mode. Noisy signal due to
fouling phenomena is not flowmeter error and

doesn’ t appear in other signals. On the other
hand, signal distortion due to electrical or thermal
environment can be found in all instrumentation.
Therefore neural networks, which can correct the
noise from the coupled relations among variables,
are suitable for removing the noise due to fouling
but cannot assure the correction of distortion due
to random noises. Fortunately, it is possible to
enhance the signal quality through categorization
of raw signals according to their characteristics in
a frequency domain. Through frequency domain
analysis, rapidly varying noises and gradually
varying noises can be separated. This indicates
that a neural network can be applied to correct
just gradually varying noises.

The two-step de-noising method was developed
based on the above concept. This method consists
of a signal preprocessing step, an training set
sampling step and a multi-stage robust training
step. In the signal preprocessing step, the low pass
filter using wavelets minimizes rapidly varying
noises. In the training set sampling step, the
modified multivariate stratification sampling using
stratification according to the time sequence and a
MAXIMIN concept was developed. Additionally,
the multi-stage robust training method was
implemented to assure the training reliability. The
effectiveness of the two-step de-noising method
was successfully demonstrated through the
validation using the simulated operational data.
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