• 제목/요약/키워드: thermal spray process

검색결과 198건 처리시간 0.021초

무가압 분말 충전 성형법을 이용한 알루미나 세라믹스의 제조 (II) 무가압 분말 충전 성형법에 의해 제조된 소결체 특성 관찰 (Preparation of Alumina Ceramics by Pressureless Powder Packing Forming Method (II) Characterization of Sintered Body Fabricated by Pressureless Powder Packing Forming Method)

  • 박정형;성재석
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.113-119
    • /
    • 1995
  • The green body was fabricated by a new forming method, pressureless powder packaing forming method, and the characteristics of sintered specimen were investigated. It was found that alumina ceramics prepared by the present method showed porous structure with narrow pore size distribution, and in case of abrasive powder sintered body, compared with dry-pressed specimen, had the nearly same density. Especially, the specimen prepared with spray-dried granules showed the characteristic that granules were not either deformed or fractured during forming and sintering process. Therefore, it was found that this new forming method was effective method in fabrication of porous ceramics on account of easy control of porosity and pore size and its high thermal stability.

  • PDF

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.

니켈기 자융성 합금 코팅층의 마모거동에 미치는 상대마모재의 영향 (Effects of Counterpart Materials on Wear Behavior of Thermally Sprayed Ni-based Self-flux Alloy Coatings)

  • 김균택;김영식
    • 동력기계공학회지
    • /
    • 제11권4호
    • /
    • pp.92-97
    • /
    • 2007
  • This study aims at investigating the wear behavior of thermally sprayed Ni-based self-flux alloy coatings against different counterparts. Ni-based self-flux alloy powders were flame-sprayed onto a carbon steel substrate and then heat-treated at temperature of $1000^{\circ}C$. Dry sliding wear tests were performed using the sliding speeds of 0.2 and 0.8 m/s and the applied loads of 5 and 20 N. AISI 52100, $Al_2O_3$, $Si_3N_4$ and $ZrO_2$ balls were used as counterpart materials. Wear behavior of Ni-based self-flux alloy coatings against different counterparts were studied using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear behavior of Ni-based self-flux alloy coatings were much influenced by counterpart materials.

  • PDF

고분자 전해질 연료전지용 스테인리스강 분리판의 HVOF AISI316-WC 코팅층 특성 (Characteristic of HVOF AISI316-WC Coating Layer on Stainless Steel Separator for PEMFC)

  • 남대근;강남현;박영도;김영석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.1-5
    • /
    • 2008
  • Stainless steels have been widely considered as metallic separators, due to their passive surface film, which is good for corrosion resistance. However, the high resistivity of the passive film increases interfacial contact resistance between the separators and electrodes. Stainless steels thermal spray coated with a mixture of tungsten carbide and stainless steel powders showed that the coated layer safely combined with the matrix but they suffered many internal defects including voids and cracks. Many cracks were formed in the coated layer and the interface of the matrix and the coated layer during the rolling process. The coated and rolled stainless steels showed lower interfacial contact resistance and corrosion resistance than bare stainless steel because of low resistivity of tungsten carbide and numerous defects, which caused crevice corrosion, in the coated layer.

  • PDF

플라즈마 용사된 WC-12%Co 피복층의 접합강도에 관한 연구 (A Study on the Bond Strength of Plasma Sprayed WC-12% Co Coating)

  • 이의길;김한삼
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.112-116
    • /
    • 2000
  • The development of new spraying processes has increased the demand for high quality protective coatings. Many thermal spraying processes have been developed to obtain coatings for a wide spectrum of materials and substrates. The plasma spray process was used to deposit coatings of WC-12%Co powders on mild steel substrate, and the characteristics of as-sprayed and vacuum heat treated coatings have been investigated. The variations of microhardness and bond strength in WC-12%Co coatings after heat treatment under vacuum circumstance have been investigated. The effects of phases and morphologies of WC-12%Co coatings have been investigated by utilizing X-ray diffraction and scanning electron microscopy, respectively. The microhardness and bond strength of the coatings were increased with increasing the temperature in the temperature range of $700^{circ}C~1000^{\circ}C$. The bond strength was obtained 49 MPa after vacuum heat treatment at $1000^{\circ}C$.

  • PDF

FT반응 Off-gas를 이용한 고압축비 전기점화 엔진의 연소 및 배기가스 특성에 관한 연구 (Combustion and Emission Characteristics in a High Compression Ratio Spark Ignition Engine using Off-gas from FT reaction)

  • 정탄;이준순;이용규;김창업;오승묵
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.114-121
    • /
    • 2018
  • FT process is a technology of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. During the FT process unreacted gas, known as Off-gas which has low-calorie, is discharged. In this study, we developed an engine that utilize simulated Off-gas, and studied the characteristics of the engine. The off-gas composition is assumed to be $H_2$ 70%, CO 15%, $CO_2$ 15% respectively. Under stoichiometric air-fuel ratio, the experiment was conducted at WOT and IMEP 0.3 Mpa changing compression ratio. Ignition timing was applied with MBT timing. Maximum indicated thermal efficiency 37% was achieved at compression ratio 15 under WOT. CO, $CO_2$ and $NO_x$ were influenced by changing compression ratio, and CO emission was satisfied with the US Tier 4 standard for nonroad engine over the entire experimental conditions.

Fabrication of Low Carbon Steel Coated with 18%Cr-2.5%Ni-Fe Powder by Laser Cladding and Its Application on Plastic Injection Mold for Aluminum Diecasting

  • Kim, Cheol-Woo;Yoo, Hyo-Sang;Cho, Kyun-Taek;Jeon, Jae-Yeol;Choi, Se-Weon;Kim, Young-Chan
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.601-607
    • /
    • 2021
  • Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes - thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.

해양환경 하에서 Ni-Cr계 자용성 합금 코팅된 ALBC3 합금의 캐비테이션 특성 평가 (Evaluation of Cavitation Characteristics for ALBC3 Alloy Coated with Ni-Cr Series Self Fluxing Alloy in Marine Environment)

  • 이승준;김성종
    • 해양환경안전학회지
    • /
    • 제19권5호
    • /
    • pp.538-544
    • /
    • 2013
  • 본 연구에서는 ALBC3 합금에 Ni기 자용성 합금으로 내마모성 및 내캐비테이션 특성을 향상시키기 위하여 용사코팅 후 열처리를 실시하여 캐비테이션 특성을 평가하였다. 본 연구 결과, 자용성 합금 코팅층이 높은 경도를 나타내어 내마모성이 우수할 것으로 판단되나, 다공질의 조직으로 인해 열악한 내캐비테이션 특성을 나타냈다. 따라서 열처리 조건의 최적화가 중요하며, 본 조건에서는 열처리 온도를 높여 자용성 합금 내 B와 Si의 유동성을 증가시킴으로써 기공이나 결함을 제거하여 특성개선 효과를 기대할 수 있을 것으로 판단된다.

열간박판압연공정의 유한요소해석 (Finite Element Analysis of Hot Strip Rolling Process)

  • 강윤호;황상무
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.829-837
    • /
    • 1992
  • 본 연구에서는 열간박판압연공정에서의 소성유동, 롤압력, 온도분포를 예측하 기 위한 새로운 방법을 제안하고 있다. 제안된 방법은 유한요소 수식화에 바탕을 두 고 있으며 박판의 소성유동과 온도판의 소성유동과 롤-박판 접촉면에서의 롤압력을 예 측하기 위하여 Hwang등이 제안한 벌칙 강소성 유한요소 수식화기법을 제시하였으며 제 안된 방법에 대한 해의 정확도는 문헌에서의 이론해와 시뮬레이션 결과를 비교하여 확 인하였다. 또한 박판에서의 온도장, 속도장과 롤에서의 온도장의 연계해석을 위한 반복계산방법이 제안되었다. 제안된 방법들을 이용하여 다양한 공정에 대한 시뮬레 이션을 수생하였으며 다양한 공정조건에 대한 롤-박판 시스템의 열적특성과 롤간극에 서 박판의 유동특성을 조사하였다.

Y2O3-BN 복합체의 미세구조 및 내플라즈마 특성 (Microstructure and plasma resistance of Y2O3-BN composites)

  • 이현규;이석신;김비룡;박태언;윤영훈
    • 한국결정성장학회지
    • /
    • 제24권3호
    • /
    • pp.127-132
    • /
    • 2014
  • $Y_2O_3$-BN 세라믹 복합체를 제작하기 위해서, 분말 입도 $3{\sim}10{\mu}m$$Y_2O_3$ 분말을 분산한 슬러리에 pH 조절제인 NaOH를 첨가하였으며 결합제로는 PVA, 가소제로는 PEG를, BN 분말과 혼합하고, 분무건조(spray drying)공정을 거쳐 $Y_2O_3$ 혼합 분말을 제조하였다. ${\O}14mm$ 크기의 $Y_2O_3$-BN 시편을 성형하고, $1550^{\circ}C$$1600^{\circ}C$에서 소결하여 $Y_2O_3$-BN 복합체를 제작하였다. BN 투입량과 소결온도의 변수에 따른 미세구조, 순도, 꺽임강도, 열팽창계수, 밀도, 체적저항, 내플라즈마 특성을 조사하였다.