• 제목/요약/키워드: thermal sensitivity

검색결과 628건 처리시간 0.026초

페룰 가공용 초정밀 무심 연삭기의 구조적 및 열적 민감도 해석 (Structural and Thermal Sensitivity Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules)

  • 김석일;이원재
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1634-1641
    • /
    • 2006
  • High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a sensitivity analysis for structural and thermal characteristics was carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW table feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The results of the structural sensitivity analysis illustrated that the vertical stiffness of hydrostatic guideway for the RW table feed system greatly influenced the horizontal loop stiffness, and the results of the thermal sensitivity analysis illustrated that the heat generation rates at hydrostatic bearings and belt pulley greatly influenced the temperature rise of hydrostatic bearings and the deviation of thermal displacement between GW and RW.

The thermal effect on electrical capacitance sensor for two-phase flow monitoring

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.335-347
    • /
    • 2016
  • One of major errors in flow rate measurement for two-phase flow using an Electrical Capacitance Sensor (ECS) concerns sensor sensitivity under temperature raise. The thermal effect on electrical capacitance sensor (ECS) system for air-water two-phase flow monitoring include sensor sensitivity, capacitance measurements, capacitance change and node potential distribution is reported in this paper. The rules of 12-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance and sensitivity map the basis of Air-water two-phase flow permittivity distribution and temperature raise are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. The cross-sectional void fraction as a function of temperature is determined from the scripting capabilities in ANSYS simulation. The results show that the temperature raise had a detrimental effect on the electrodes sensitivity and sensitive domain of electrodes. The FE results are in excellent agreement with an experimental result available in the literature, thus validating the accuracy and reliability of the proposed flow rate measurement system.

위성 열해석을 위한 접촉열저항의 민감도 해석 (Sensitivity Analysis of Contact Resistance for Thermal Analysis of Spacecraft)

  • 한조영
    • 한국항공우주학회지
    • /
    • 제32권7호
    • /
    • pp.117-125
    • /
    • 2004
  • 기 수립한 열해석 모델을 바탕으로 접촉열전도가 있는 부위의 민감도 해석을 수행함으로서 향후 기계적 접속 부위 설계 변경시의 열설계에 대한 연구를 수행했다. 해석의 편의를 위해 비교적 간단한 열해석 모텔을 선택했다. 위성 버스 전압과 접촉열저항의 크기를 다양하게 변화시켜 해석을 수행했으며, 그 결과 향후 통일한 모듈에서 기계적 접속 조건 변경시 접촉열저항을 원래의 설계원용치를 기준 값으로 해 히터의 용량을 충분히 크게 설계할 경우 성공적인 열설계가 가능하리라 여겨진다.

가용합금형 스프링클러 헤드의 열감도 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Thermal Sensitivity for Fusible Alloy Type Sprinkler Head)

  • 권오승;이진호
    • 한국화재소방학회논문지
    • /
    • 제9권1호
    • /
    • pp.20-29
    • /
    • 1995
  • The sprinkler head is a component of the sprinkler system intended to discharge water for automatic detection and extinguishment of fires. On this study, thermal characteristic values affecting the sensitivity of the fusible alloy type sprinkler head were obtained and analyzed under heated air stream condition which had constant temperature and velocity. The experiment was carried out under the forced convection condition with both the conductive heat loss considered and neglected. The thermal characteristic values of the sprinkler head were obtained in accordance with the material and shape of the heat responsive element and the conditions of the main body.

  • PDF

ZnO와 ZnO-CuO후막의 일산화탄소 감응특성 (CO gas sensitivity of ZnO and ZnO-CuO thick films)

  • 전석택;최우성
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권8호
    • /
    • pp.819-824
    • /
    • 1996
  • We have investigated the temperature dependence of CO gas sensitivity for ZnO and ZnO-CuO thick films at 200 ppm CO gas, where those films were prepared by thermal transformation. The ZnO thick film shows the maximum sensitivity of -4 at >$300^{\circ}C$ On the other hand, ZnO-CuO(more than 1mol%) thick film shows that the maximum sensitivity reduced to less than 1.5. The decrease in sensitivity of CO gas with increasing the CuO contents is due to the decrease of the oxygen absorption in thick films.

  • PDF

Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method

  • Kim, Min-Geun;Kim, Jae-Hyun;Cho, Seon-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.683-691
    • /
    • 2010
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis(DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.25% of CPU time for the finite differencing. Also, the topology optimization yields physical meaningful results.

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • 제10권2호
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

미세 입자에 의한 thermal asperity의 민감도 해석 및 감소 방안 (Sensitivity and Rejection Capability of Thermal Asperity Induced by Sub-Micron Contamination Particles)

  • 좌성훈
    • 한국자기학회지
    • /
    • 제10권6호
    • /
    • pp.310-317
    • /
    • 2000
  • 먼지 입자에 의한 thermal asperity(TA)써 발생은 드라이브의 신뢰성에 큰 영향을 미친다. 본 논문에서는 드라이브의 입자 분사 시험 등을 통하여 헤드 및 디스크의 TA민감도를 분석하고 TA발생의 중요 인자들을 고찰하였다. 헤드의 TA 민감도는 MR 및 GMR 센서의 재질 및 특성에 많은 영향을 받으며 특히 바이어스 전류가 증가함에 띠라 TA 민감도는 증가한다. 한편 슬라이더의 ABS 형태를 적절히 설계 함으로서 TA를 어느 정도 감소시킬 수 있다. 디스크의 경우 디스크 카본 overcoat층의 scratch저항력을 증가시킴으로써 TA의 발생을 감소시킬 수 있다. 그러나 먼지 입자가 디스크 표면에 부착되는 정도를 결정하는 표면에너지는 TA 발생에 거의 영향을 미치지 않는다. 이는 TA 발생을 초래하는 먼지 입자의 크기가 1-2 $\mu\textrm{m}$로서 디스크 표면의 윤활막에 의한 모세관력이 너무 커서 입자들이 디스크표면으로부터 이탈할 수 없기 때문이다

  • PDF

열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계 (Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems)

  • 김민근;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF

A PDMS-Coated Optical Fiber Bragg Grating Sensor for Enhancing Temperature Sensitivity

  • Park, Chang-Sub;Joo, Kyung-Il;Kang, Shin-Won;Kim, Hak-Rin
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.329-334
    • /
    • 2011
  • We proposed a poly-dimethylsiloxane (PDMS)-coated fiber Bragg grating (FBG) temperature sensor for enhancing temperature sensitivity. By embedding the bare FBG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed structure could be effectively improved by 4.2 times higher than those of the conventional bare-type FBG sensors due to the high thermal expansion coefficient of the PDMS. We analyzed the temperature-sensitivity enhancement effect with the increased Bragg wavelength shift in our structure and dependence on the temperature sensitivity with respect to the cross-section area of the PDMS.