• 제목/요약/키워드: thermal runaway

검색결과 83건 처리시간 0.024초

리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석 (Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery)

  • 전민규;이은송;윤홍식;길상인;박현욱
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

주택용 분전반에 설치되는 서지보호기의 열적 안전성 시험 및 분석 (A thermal stability testing and analysis for a surge protector installed in residential distribution board)

  • 김주철;박장범;기채옥
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.339-341
    • /
    • 2009
  • 개별세대 내 정보통신기기 및 홈네트워크 장비증가로 인하여 서지보호장치(SPD : Surge Protective Device)가 설치되고 있고 산업규격개정 및 등전위 접지시스템 강화에 따라 서지보호기 사용량은 점진적으로 증가하고 있다. 주택용 분전반에 설치되는 서지보호기의 부품은 전압제한형 소자인 $Z_nO$배리스터가 사용되고 있으나 일시적 과전압특성 (Temporary Overvoltage Characteristic) 위험에 노출되어있다. 본 논문은 일반주택에 사용되는 서지보호기의 열적 안전성 (Thermal Stability) 특성시험을 통하여 제품을 분석하였고 이를 토대로 개선안을 제시하였다. 분석결과 누설전류를 차단하기위한 가스 방전관(GDT) 사용 및 열폭주(Thermal Runaway) 현상을 막기 위한 안전장치가 2종 이상 필요하였다.

  • PDF

레졸수지 합성반응에서 온도조절 물질이 열폭주 특성에 미치는 영향 (The Effects of the Tempered Materials on the Thermal Runaway Characteristics in the Resol Resin Synthesis Reaction)

  • 이정석;이근원
    • 한국가스학회지
    • /
    • 제18권4호
    • /
    • pp.27-34
    • /
    • 2014
  • 본 연구에서는 단열열량계의 일종인 폭발열량 측정장치를 이용하여 레졸수지 합성반응에서 온도조절 물질이 열폭주 특성에 미치는 영향을 평가하고, 반응열과 활성화에너지 등의 속도론적 데이터를 검토하였다. 그 결과, 온도조절 물질이 투입된 낮은 고형분 농도에서는 폭주반응의 격렬함을 나타내는 순간 특성치들이 감소했다. 그러나 투입된 온도조절 물질의 갑작스런 소실은 급격한 2차 폭주반응을 촉발시켰다. 이때, 레졸수지 합성반응의 폭주반응에 의한 반응열은 페놀을 기준으로 약 157 kJ/mol이었고, 활성화에너지는 약 60 kJ/mol로 나타났다.

ZnO 피뢰기 소자의 열적.전기적 특성 분석 (Analysis of Thermal and Electrical Characteristics of ZnO Arrester Blocks)

  • 이수봉;이복희
    • 조명전기설비학회논문지
    • /
    • 제21권10호
    • /
    • pp.82-88
    • /
    • 2007
  • 이 논문에는 교류전압에서 ZnO 피뢰기 소자의 열적 전기적 특성을 기술하였다. ZnO 피뢰기 소자의 누설전류는 시간의 변화에 따라 측정하였다. ZnO 피뢰기 소자의 온도분포를 열화상카메라에 의해 관측하였다. ZnO 피뢰기 소자의 열화 및 열폭주 현상은 열발생과 열방산을 결정짓는 ZnO 피뢰기 소자의 온도한계와 밀접한 관계가 있다. ZnO 피뢰기 소자의 저항은 ZnO 피뢰기 소자의 온도와 누설전류에 의해 민감하게 변화한다. 결론적으로 ZnO 피뢰기 소자의 열화 및 열폭주 현상은 ZnO 피뢰기 소자의 온도와 소자를 통해 흐르는 누설전류에 상당히 의존적인 것으로 나타났다.

리튬이온 배터리의 분리막 손상 요인별 방전펄스의 검출과 분석 (Detection and Analysis of Discharge Pulses by Failure Mechanisms of the Separator inside Lithium-Ion Batteries)

  • 임승현;이경렬;김남훈;김동언;길경석
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.327-332
    • /
    • 2021
  • Lithium-ion batteries (LIBs) have become a main energy storage device in various applications, such as portable appliances, renewable energy facilities, and electric vehicles. However, the poor thermal stability of LIBs may cause explosion or fire. The thermal runaway is the result of a failure of the separator inside LIB. Damages like tearing, piercing, and collapsing of the separator were simulated in a mechanical, an electrical, and a thermal way, and small discharge pulses of a few mV were detected at the time of separator damages. From the experimental results, this paper provided a method that can identify the separator failure before thermal runaway in the aspect of a potential explosion and fire prevention measures.

안료제조시 중화공정의 열안정성 평가 (Evaluation of Thermal Stability in Neutralization Process of Pigment Plant)

  • 이근원;한인수;박상현
    • 한국안전학회지
    • /
    • 제22권4호
    • /
    • pp.43-50
    • /
    • 2007
  • Lack of understanding of the process chemistry and thermodynamics are the major reasons that can is lead to thermal runaway reaction in the chemical reaction process. The evaluation of reaction factors and thermal behavior in neutralization process of pigment plant are described in this paper. The experiments were performed in the C 80 calorimeter, and Thermal Screening Unit($TS^{u}$). The aim of the study was to evaluate the results of thermal stability in terms of safety reliability to be practical applications. It suggested that we be proposed safe operating conditions and securities for accident prevention through this study.

용융염 코팅이 열지에 미치는 영향 (Effect of Molten Salt Coating on Heat Papers)

  • 임채남;이정민;강승호;정해원
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.528-534
    • /
    • 2014
  • Thermal batteries are primary reserve batteries that use inorganic salt as electrolytes which are inactive at room temperature. The two principal heat sources that have been used in thermal batteries are heat paper and heat pellets. As soon as the heat paper, which is ignited by the initiator, in turn ignites the heat pellets, all the solid electrolytes are melted into excellent ionic conductors. However, the high combustion temperature by heat papers in thermal batteries causes thermal decomposition at the cathode, eventually leading to a thermal runaway. In this paper, we have attempted to prepare $Zr/BaCrO_4$ heat papers coated with KCl molten salt. We have also investigated the effect of a molten salt coating on the heat papers through the thermal characteristics such as calorimetric value, combustion temperature and burning rate. The calorimetric value and combustion temperature of heat papers were reduced with an increase in the molten salt coating. As a result, the molten salt coating on heat papers greatly reduced risk of a thermal runaway and improved the stability of thermal batteries.

조성비에 따른 Zr/BaCrO4 열지의 열적 특성 (Thermal Characteristics of Zr/BaCrO4 Heat Paper with Fuel/Oxidizer Compositions)

  • 임채남;이정민;박병준;강승호;정해원
    • 한국전기전자재료학회논문지
    • /
    • 제29권10호
    • /
    • pp.652-658
    • /
    • 2016
  • Thermal batteries use inorganic salt as electrolyte, which is inactive at room temperature. As soon as heat pellets are fired by an igniter, all the solid electrolytes are instantly melted into excellent ionic conductors. However, the abnormal heat generation by the igniter flame or heat pellets causes the thermal decomposition of the electrode and the melting of the anode, eventually leading to a thermal runaway, which results in overheating or explosion. The thermal runaway can be significantly reduced by the adoption of $Zr/BaCrO_4$ heat papers. In this study, the heat papers with various ratios of fuel (Zr) and oxidizer ($BaCrO_4$) were prepared by the paper-making process. We have investigated the calorimetric value, burning rate, and ignition sensitivity. The ignition test of heat pellets and the discharge test of thermal batteries were also carried out. At the composition of 40 wt.% of Zr, the heat papers showed the highest specific calorimetric value and burning rate. As a result, $Zr/BaCrO_4$ heat paper made by the paper-making process has shown the applicability for thermal batteries.

인청동 스위칭 모듈을 이용한 전력계통 및 전자기기 내부회로의 MOV 열폭주 방지와 안전성 개선 (Thermal Runaway Prevention of MOV and Safety Improvement of Power Line System and Internal Electronic Device Circuit Using a Phosphorous Switching Module)

  • 김주철;최경래;이상중
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.75-79
    • /
    • 2011
  • The MOV(Metal Oxide Varistor), a voltage limiting element, has been installed in the SPD(Surge Protective Device) or inside the internal circuit of an electronic appliance for protection of the electric power system and electronic device against electrical surge. Such an MOV is exposed, however, to the risk of the thermal runaway resulting from excessive voltage and deterioration. In this paper, a reciprocal action has been tested and analyzed using a phosphorus bronze switching module and the low-temperature solder. And a short current break characteristic test linked with the circuit breaker has been performed to limit the inrush current when the MOV breaks down. It has been proven that the phosphorus bronze switching module installed inside the internal circuit can improve the safety of the power line system and the electronic device.

냉동기운전 고온초전도코일의 안전성평가기준에 관한 연구 (A Study on Stability Criterion for Cryocooler Operating HTS Coils)

  • 석산돈사;김석범;한경희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권7호
    • /
    • pp.317-323
    • /
    • 2001
  • We investigated the stability of cryocooler-cooled high-temperature superconducting (HTS) coils by using a computer program based on FEM. In this study, the current at which "thermal runaway" occurs, which depends on the relationship between the cooling power of the cryocooler and the heat generation in HTS coils, was adopted as a stability criterion of cryocooler operating HTS coils. It was shown that cryocooler-cooled HTS coil was stable in operating current above the critical current from the numerical analysis results by HTS model coil. And also, if we efficiently remove the heat generation from HTS coils by potimizing heat drain, the ramp-rate limitation can be mitigated because the effect of AC loss by the current rise was too small. Furthermore, in the case of pulsed operation; the HTS model coil is ramped from zero to the peak value in one second and back to zero current in one second, such as the operation of SMES device, the peak value of poerating current is 1.5-2 times greater than that of the thermal runaway current.

  • PDF