• Title/Summary/Keyword: thermal resistance network model

Search Result 21, Processing Time 0.02 seconds

Prediction of Thermal conductivities of 3-D braided glass/epoxy composites using a thermal-electrical analogy (3차원 브레이드 유리섬유/에폭시 복합재료의 열전도도 예측에 관한 연구)

  • 정혁진;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.52-55
    • /
    • 2002
  • This paper examines the effective thermal conductivity of 3-D braided glass/epoxy composites. 3-D braided composites have a number of advantage over conventional laminate composites, including through-thickness reinforcement, and high damage tolerance and processability. The thermal properties of composites depend primarily on the microstructure of the braided preform and properties of constituent materials. A thermal resistance network model based on structure of the braided preform is proposed by using thermal-electrical analogy. In order to affirm the applicability theses solutions, thermal conductivities of 3-D braided glass/epoxy composites are measured

  • PDF

Lumped-Parameter Thermal Analysis and Experimental Validation of Interior IPMSM for Electric Vehicle

  • Chen, Qixu;Zou, Zhongyue
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2276-2283
    • /
    • 2018
  • A 50kW-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.

Material Property Characterization Method and Experimental Measurement of the Effective Thermal Conductivities of Woven Fabric Composite Materials (직물 복합재료의 물성치 특성화 기법 및 실험적 계측)

  • Moon, Young-Kyu;Goo, Nam-Seo;Kim, Cheol;Woo, Kyung-Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.64-69
    • /
    • 2001
  • In general, laminate effective orthotropic thermal conductivities are dependent on fiber and matrix material properties, fiber volume fraction and fabric geometric parameters. This paper deals with the predicting method of the transverse and the in-plane thermal conductivities of plain weave fabric composites based on the three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit cell model that characterizes the periodically repeated pattern of plain weave. Also, an experiment apparatus is setup to measure the thermal conductivities of composite material. The numerical and experimental results of carbon/epoxy plain weave are compared.

  • PDF

A predicting model for thermal conductivity of high permeability-high strength concrete materials

  • Tan, Yi-Zhong;Liu, Yuan-Xue;Wang, Pei-Yong;Zhang, Yu
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2016
  • The high permeability-high strength concrete belongs to the typical of porous materials. It is mainly used in underground engineering for cold area, it can act the role of heat preservation, also to be the bailing and buffer layer. In order to establish a suitable model to predict the thermal conductivity and directly applied for engineering, according to the structure characteristics, the thermal conductivity predicting model was built by resistance network model of parallel three-phase medium. For the selected geometric and physical cell model, the thermal conductivity forecast model can be set up with aggregate particle size and mixture ratio directly. Comparing with the experimental data and classic model, the prediction model could reflect the mixture ratio intuitively. When the experimental and calculating data are contrasted, the value of experiment is slightly higher than predicting, and the average relative error is about 6.6%. If the material can be used in underground engineering instead by the commonly insulation material, it can achieve the basic requirements to be the heat insulation material as well.

Effective Thermal Conductivities of CE3327 Plain-weave Fabric Composite (CF3327 평직 복합재료의 열전도도)

  • 구남서;문영규;우경식
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.27-34
    • /
    • 2002
  • The purpose of this study is to measure and predict the thermal conductivity of CF3327 plain-weave fabric composite made by Hankuk Fiber, Co. An experiment apparatus based on the comparative method has been made to measure the thermal conductivities of the composite material. Its accuracy was proved by measuring the thermal conductivity of graphite which is well-known. Micro-mechanical approaches are useful to assess the effect of parameters such as fiber and matrix material properties, fiber volume fraction and fabric geometric parameters on the effective material properties of composites. In this study, prediction was based on the concept of three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit ceil model that characterized the periodically repeated pattern of a plain weave. The numerical results were compared with experimental one and good agreement was observed. Also, the effects of fiber volume fraction on the thermal conductivity of several composites has been investigated.

Scale Effect Analysis of LNG Cargo Containment System Using a Thermal Resistance Network Model (열저항 네트워크 모델을 이용한 LNG 화물창 Scale Effect 분석)

  • Hwalong You;Taehoon Kim;Changhyun Kim;Minchang Kim;Myungbae Kim;Yong-Shik Han;Le-Duy Nguyen;Kyungyul Chung;Byung-Il Choi;Kyu Hyung Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.222-230
    • /
    • 2023
  • In the present work, the scale effect on the Boil-Off Rate (BOR) was investigated based on an analytical method to systematically evaluate the thermal performance of a Liquefied Natural Gas (LNG) Cargo Containment System (CCS). A two-dimensional thermal resistance network model was developed to accurately estimate the heat ingress into the CCS from the outside. The analysis was performed for the KC-1 LNG membrane tank under the IGC and USCG design conditions. The ballast compartment of both the LNG tank and cofferdam was divided into six sections and a thermal resistance network model was made for each section. To check the validity of the developed model, the analysis results were compared with those from existing literature. It was shown that the BOR values under the IGC and USCG design conditions were agreed well with previous numerical results with a maximum error of 1.03% and 0.60%, respectively. A SDR, the scale factor of the LNG CCS was introduced and the BOR, air temperature of the ballast compartment, and the surface temperature of the inner hull were obtained to examine the influence of the SDR on the thermal performance. Finally, a correlation for the BOR was proposed, which could be expressed as a simple formula inversely proportional to the SDR. The proposed correlation could be utilized for predicting the BOR of a full-scale LNG tank based on the BOR measurement data of lab-scale model tanks.

ResNet-Based Simulations for a Heat-Transfer Model Involving an Imperfect Contact

  • Guangxing, Wang;Gwanghyun, Jo;Seong-Yoon, Shin
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.303-308
    • /
    • 2022
  • Simulating the heat transfer in a composite material is an important topic in material science. Difficulties arise from the fact that adjacent materials cannot match perfectly, resulting in discontinuity in the temperature variables. Although there have been several numerical methods for solving the heat-transfer problem in imperfect contact conditions, the methods known so far are complicated to implement, and the computational times are non-negligible. In this study, we developed a ResNet-type deep neural network for simulating a heat transfer model in a composite material. To train the neural network, we generated datasets by numerically solving the heat-transfer equations with Kapitza thermal resistance conditions. Because datasets involve various configurations of composite materials, our neural networks are robust to the shapes of material-material interfaces. Our algorithm can predict the thermal behavior in real time once the networks are trained. The performance of the proposed neural networks is documented, where the root mean square error (RMSE) and mean absolute error (MAE) are below 2.47E-6, and 7.00E-4, respectively.

A Study on Performance of Thermoelectric Air-Cooling System in Parallel Flow (평행유동에서 공랭식 열전모듈 냉각시스템의 성능에 관한 연구)

  • Karng, Sarng-Woo;Shin, Jae-Hoon;Han, Hun-Sik;Kim, Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.421-429
    • /
    • 2011
  • Experimental and theoretical studies on cooling performance of two-channel thermoelectric air-cooling system in parallel flow are conducted. The effects of operating temperature to physical properties of thermoelectric module (TEM) are experimentally examined and used in the analysis of an air-cooling system considering thermal network and energy balance. The theoretical predicted temperature variation and cooling capacity are in good agreement with measured data, thereby validating analytic model. The heat absorbed rate increases with increasing the voltage input and decreasing thermal resistance of the system. The power consumption of TEM is linearly proportional to mean temperature differences due to variations of the physical properties on operation temperature of TEM. Furthermore thermal resistance of hot side has greater effects on cooling performance than that of cold side.

Modeling of Crosstalk Behaviors in Thermal Inkjet Print Heads (열 잉크젯 프린트헤드의 채널간 간섭현상의 모델링)

  • Lee, You-Seop;Sohn Dong-Ki;Kim Min-Soo;Kuk Keon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.141-150
    • /
    • 2007
  • This paper presents a lumped model to predict crosstalk characteristics of thermally driven inkjet print heads. Using the lumped R-C model, heating characteristics of the head are predicted to be in agreement with IR temperature measurements. The inter-channel crosstalk is simulated using the lumped R-L network. The values of viscous flow resistance, R and flow inertance, L of connecting channels are adjusted to accord with the 3-D numerical simulation results of three adjacent jets. The crosstalk behaviors of a back shooter head as well as a top shooter head have been investigated. Predictions of the proposed lumped model on the meniscus oscillations are consistent with numerical simulation results. Comparison of the lumped model with experimental results identifies that abnormal two-drop ejection phenomena are related to the increased meniscus oscillations because of the more severe crosstalk effects at higher printing speeds. The degree of crosstalk has been quantified using cross-correlations between neighboring channels and a critical channel dimension for acceptable crosstalk has been proposed and validated with the numerical simulations. Our model can be used as a design tool for a better design of thermal inkjet print heads to minimize crosstalk effects.

Thermal Management of a Ni/MH Battery Module for Electric Vehicle (전기자동차용 Ni/MH 전지 Module의 열관리기술)

  • Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1034-1040
    • /
    • 1997
  • Temperature distribution of battery module consists of 11 batteries of 90Ah rate is analyzed using commercial software NISA II. Equivalent thermal resistance network is used to reduce the number of element in calculating heat transfer through a medium composed of several different thermal conductivity layers. Orthotropic model is used to put different thermal conductivity values according to Cartesian coordinate. Aluminum cooling fins are inserted in the middle of batteries to reduce battery module temperature. The cooling fin at the end of the module does not necessary in reducing maximum temperature. Combined effect of front and side cooling fin is analyzed to reduce the temperature difference among batteries. The maximum temperature difference among batteries is reduced within $3^{\circ}C$ when 4 aluminum cooling tin of 1mm thickness is inserted in battery module.

  • PDF