• 제목/요약/키워드: thermal resistance network

검색결과 54건 처리시간 0.028초

Dynamic Simulation of Annual Energy Consumption in an Office Building by Thermal Resistance-Capacitance Method

  • Lee, Chang-Sun;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제6권
    • /
    • pp.1-13
    • /
    • 1998
  • The basic heat transfer process that occurs in a building can best be illustrated by an electrical circuit network. Present paper reports the dynamic simulation of annual energy consumption in an office building by the thermal resistance capacitance network method. Unsteady thermal behaviors and annual energy consumption in an office building were examined in detail by solving the simultaneous circuit equations of thermal network. The results are used to evaluate the accuracy of the modified BIN method for the energy consumption analysis of a large building. Present thermal resistance-capacitance method predicts annual energy consumption of an office building with the same accuracy as that of response factor method. However, the modified BIN method gives 15% lower annual heating load and 25% lower cooling load than those from the present method. Equipment annual energy consumptions for fan, boiler and chiller in the HVAC system are also calculated for various control systems as CAV, VAV, FCU+VAV and FCU+CAV. FCU+CAV system appears to consume minimum annual energy among them.

  • PDF

열-전기 유사성을 이용한 복합재료의 열전도도 예측 (Effective Thermal Conductivities of Fiber-Reinforce Composites Using a Thermal-Electrical Analogy)

  • 조영준;강태진;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.81-84
    • /
    • 2002
  • An approach for predicting the effective thermal conductivities of fiber-reinforce composite has been developed based on a thermal-electrical analogy. The unit cell of the composite laminate is divided into regular volume elements and the material properties have been given to each element. By constructing the series-parallel thermal resistance network, the thermal conductivities of composite both in-plane and out-of-plane direction have been predicted. Graphite/Epoxy composite is used for a balanced plain-weave composite laminate. By comparing the predicted results and the previous works, good agreement has been found.

  • PDF

3차원 브레이드 유리섬유/에폭시 복합재료의 열전도도 예측에 관한 연구 (Prediction of Thermal conductivities of 3-D braided glass/epoxy composites using a thermal-electrical analogy)

  • 정혁진;강태진;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.52-55
    • /
    • 2002
  • This paper examines the effective thermal conductivity of 3-D braided glass/epoxy composites. 3-D braided composites have a number of advantage over conventional laminate composites, including through-thickness reinforcement, and high damage tolerance and processability. The thermal properties of composites depend primarily on the microstructure of the braided preform and properties of constituent materials. A thermal resistance network model based on structure of the braided preform is proposed by using thermal-electrical analogy. In order to affirm the applicability theses solutions, thermal conductivities of 3-D braided glass/epoxy composites are measured

  • PDF

직물 복합재료의 물성치 특성화 기법 및 실험적 계측 (Material Property Characterization Method and Experimental Measurement of the Effective Thermal Conductivities of Woven Fabric Composite Materials)

  • 문영규;구남서;김철;우경식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.64-69
    • /
    • 2001
  • In general, laminate effective orthotropic thermal conductivities are dependent on fiber and matrix material properties, fiber volume fraction and fabric geometric parameters. This paper deals with the predicting method of the transverse and the in-plane thermal conductivities of plain weave fabric composites based on the three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit cell model that characterizes the periodically repeated pattern of plain weave. Also, an experiment apparatus is setup to measure the thermal conductivities of composite material. The numerical and experimental results of carbon/epoxy plain weave are compared.

  • PDF

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Lumped-Parameter Thermal Analysis and Experimental Validation of Interior IPMSM for Electric Vehicle

  • Chen, Qixu;Zou, Zhongyue
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2276-2283
    • /
    • 2018
  • A 50kW-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.

CF3327 평직 복합재료의 열전도도 (Effective Thermal Conductivities of CE3327 Plain-weave Fabric Composite)

  • 구남서;문영규;우경식
    • Composites Research
    • /
    • 제15권5호
    • /
    • pp.27-34
    • /
    • 2002
  • 본 연구의 목적은 (주)한국와이바의 CF3327 평직 복합재료의 열전도도를 실험적으로 계측하고 이를 이론적인 예측과 비교하는데 있다. 열전도도 계측을 위하여 비교계측법의 원리를 이용한 실험 장치를 제작하였으며 열전도도가 잘 알려진 그라파이트를 실험함으로써 장비의 정확성을 확인하였다. 미시역학적인 방법은 섬유 및 기지의 물성, 섬유체적비, 직조 형태 등의 변수들이 복합재료의 유효물성치에 미치는 영향을 평가하는데 유용하다. 본 연구에서는 3차원 직-병렬 열저항 개념을 주기적으로 반복되는 평직의 단위구조에 적용하여 열전도도를 예측하였다. 해석 결과를 실험 결과와 비교한 결과 잘 일치함을 확인하였고 섬유체적비가 에폭시 수지 복합재료의 열전도도에 미치는 영향을 고찰하였다.

복사열전달을 고려한 고층아파트 연속난방 열공급제어 시뮬레이션 (Simulation of Heat Supply Control of Continuous Heating System of Multistoried Apartment in Consideration of Radiation Heat Transfer)

  • 최영돈;홍진관;윤종호;이남호
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.78-92
    • /
    • 1994
  • Thermal performance of pipe network of continuous heating system controlled by thermostat and flow control valve was simulated in consideration of radiation heat transfer and solved by linear analysis method. Thermal performance of real apartment building with radiant floor heating system was simulated by equivalence heat resistance-capacity method. This method enables to simulate the unsteady variation of temperature or each element of building. Heat transfer characteristics of each element were also investigated.

  • PDF

등가 열저항을 이용한 R-EPS용 전동기의 정상상태 열해석 (Steady State Thermal Analysis of Brushless Motor for Rack Type Electric Power Steering Using Equivalent Thermal Resistance)

  • 오영진;하경호;임양수;홍정표;진종학;정대종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.84-86
    • /
    • 2001
  • This paper deals with the characteristic and thermal analysis of brushless motors for Rack assist type Electric Power Steering(REPS). The performance of permanent magnet is under the influence of temperature. To predict the motor performance, the thermal analysis is necessary. The equivalent thermal network is composed of the thermal resistance and the temperature of major parts is calculated according to the operating condition.

  • PDF

평행유동에서 공랭식 열전모듈 냉각시스템의 성능에 관한 연구 (A Study on Performance of Thermoelectric Air-Cooling System in Parallel Flow)

  • 강상우;신재훈;한훈식;김서영
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.421-429
    • /
    • 2011
  • Experimental and theoretical studies on cooling performance of two-channel thermoelectric air-cooling system in parallel flow are conducted. The effects of operating temperature to physical properties of thermoelectric module (TEM) are experimentally examined and used in the analysis of an air-cooling system considering thermal network and energy balance. The theoretical predicted temperature variation and cooling capacity are in good agreement with measured data, thereby validating analytic model. The heat absorbed rate increases with increasing the voltage input and decreasing thermal resistance of the system. The power consumption of TEM is linearly proportional to mean temperature differences due to variations of the physical properties on operation temperature of TEM. Furthermore thermal resistance of hot side has greater effects on cooling performance than that of cold side.