• Title/Summary/Keyword: thermal resistance method

Search Result 683, Processing Time 0.026 seconds

Fundamental Studies on the Thermal conductivity and Thermal Diffusivity of Rough rice (벼의 열전도계수와 열확산계수에 관한 기초연구)

  • 김만수;고학균
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.53-63
    • /
    • 1979
  • The knowlege of thermal properties of rough rice has become of greate importance to the analysis of heat and mass transfer phenomenon in rice drying and storage process. Some information is available on the thermal properties of rough rice in foreign countries but is not available for these properties in Korea. A fundamental study was made to determine the thermal conductivity and thermal diffusivity of rough rice with line source method and to select current and resistance suitable for these properties from investigating the effect of current and resistance of heating wire on the temperature rise. The result of this study may be summarized as follows ; 1. Even through the power per unit length of heating wires is about the same, the tendency of temperature rise showed a little difference among them , and the suitable range of it for thermal properties was found to be 3.56-5.37w/m. 2. the most desirable resistance and current of heating wire was 18.40 ohm/m, 0.44 amperes among three kinds of heating wires and currents, respectively. because it took 13 minutes or so for the heating wire to reach equilibrium temperature. 3. The thermal conductivity of rough rice was 0.120-0.130 w/m$ ^\circ C$. and thermal diffusivity of it was $5.8210 $\times10^{-8} -9.7529 $\times10^{-8} m^2 /s.$ 4.The thermal conductivity showed a little difference in variation with resistance of heating wire but the variation of current of heating wire at the same resistance did not affect the thermal conductivity , and the thermal diffusivity was not affected by the variation of resistance and current.

  • PDF

Thermal buckling resistance of simply supported FGM plates with parabolic-concave thickness variation

  • Benlahcen, Fouad;Belakhdar, Khalil;Sellami, Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.591-602
    • /
    • 2018
  • This research presents an investigation on the thermal buckling resistance of FGM plates having parabolic-concave thickness variation exposed to uniform and gradient temperature change. An analytical formulation is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. A specific function of thickness variation is introduced where it controls the parabolic variation intensity of the thickness without changing the original material volume. The results indicated that the loss ratio in buckling resistance is the same for any gradient temperature profile. Influencing geometrical and material parameters on the loss ratio in the thermal resistance buckling are investigated which may help in design guidelines of such complex structures.

Optimal Thermal Resistance Extraction Method for the Current Source Model of HBT (HBT의 전류원 모델을 위한 최적 열 저항값 추출 방법)

  • 서영석;김인성;송재성;남효덕
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.367-372
    • /
    • 2004
  • Two new extraction methods for the thermal Resistance of HBT(Heterojunction Bipolar Transistors) are proposed. First, the analytical expression, based on the thermal characteristics that the base to emitter junction voltage drops with the increase of junction temperature, is derived. Second, the thermal resistance equation that can predict the measured DC(Direct Current) data optimally is derived. These optimal thermal resistance expression is applied to the 2 finger 2${\times}$20${\mu}{\textrm}{m}$-AlGaAs/GaAs HBT and shows the good agreement with the measured data.

Evaluation of Ground Effective Thermal Conductivity and Borehole Effective Thermal Resistance from Simple Line-Source Model (단순 선형열원 모델을 이용한 지중 유효 열전도도와 보어홀 유효 열저항 산정)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.512-520
    • /
    • 2007
  • The design of a ground-source heat pump system includes specifications for a ground loop heat exchanger where the heat transfer rate depends on the effective thermal conductivity of the ground and the effective thermal resistance of the borehole. To evaluate these heat transfer properties, in-situ thermal response tests on four vertical test boreholes with different grouting materials were conducted by adding a monitored amount of heat to circulating water. The line-source method is applied to the temperature rise in an in-situ test and extended to also give an estimate of borehole effective thermal resistance. The effect of increasing thermal conductivity of the grouting materials from 0.818 to $1.104W/m^{\circ}C$ resulted in overall increases in effective thermal conductivity by 15.8 to 56.3% and reductions in effective thermal resistance by 13.0 to 31.1%.

Mechanical Properties of Metal/Ceramic FGM made by Thermal Spraying Method (용사법에 의해 제작된 금속/세라믹 경사기능 재료의 기계적 특성)

  • Kim, Y.S.;Nam, K.W.;Kim, H.S.;Oh, M.S.;Kim, K.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.41-48
    • /
    • 1998
  • This study was aimed at development of fabrication process of functionally graded materials(FGM), consisting of metal and ceramic by thermal spraying method. NiCrAIY/$Al_2O_3$ FGM were made by using plasma spraying onto the SS400 carbon steel substrate. And mechanical properties such as microhardness, thermal shock resistance and adhesive strength of the coating layer were investigated. Adhesive strength was evaluated by acoustic emission method. It was resulted that NiCrAIY/$Al_2O_3$ FGM made by thermal spraying method showed excellent thermal shock resistance and adhesive strength compared to the other lamellar structures of sprayed coatings and that AE is useful tool to evaluate the defect of thermal sprayed coating layer.

  • PDF

INFLUENCE OF THE THERMAL CONTACT RESISTANCE ON THE FIN-TUBE HEAT EXCHANGER PERFORMANCE (핀-관 열교환기의 열 접촉저항이 전열성능에 미치는 영향 연구)

  • Yoo, S.S.;Lee, M.S.;Hwang, D.Y.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.135-144
    • /
    • 2009
  • In this study, the heat transfer and fluid flow characteristics of a condenser for a refrigerator are analyzed with the numerical method. The main objective of the study is to obtain basic data in order to develop a new type of condenser focused on an influence of thermal resistance of air side and thermal contact resistance on the heat transfer performance. The CFD technique was used for whole study, and experiments were performed in order to verify the reliability of the numerical analysis and predict the thermal contact resistance. In this study, a heat exchanger sample was made of a part of condenser to make the experimental and numerical analysis simple and efficient. Water was used for the inner working fluid of the heat exchanger, and an experimental apparatus was composed concisely. A heat exchanger sample of tube type was used to verify the reliability of numerical analysis, and a heat exchanger of fin and tube type was used to predict the ratio of thermal contact resistance to the overall thermal resistance.

  • PDF

INFLUENCE OF THE THERMAL CONTACT RESISTANCE ON THE FIN-TUBE HEAT EXCHANGER PERFORMANCE (핀-관 열교환기의 열 접촉저항이 전열성능에 미치는 영향 연구)

  • Yoo, S.S.;Lee, M.S.;Han, B.Y.;Park, H.K.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.46-55
    • /
    • 2010
  • In this study, the heat transfer and fluid flow characteristics of a condenser for a refrigerator are analyzed with the numerical method. The main objective of the study is to obtain basic data in order to develop a new type of condenser focused on an influence of thermal resistance of air side and thermal contact resistance on the heat transfer performance. The CFD technique was used for whole study, and experiments were performed in order to verify the reliability of the numerical analysis and predict the thermal contact resistance. In this study, a heat exchanger sample was made of a part of condenser to make the experimental and numerical analysis simple and efficient. Water was used for the inner working fluid of the heat exchanger, and an experimental apparatus was composed concisely. A heat exchanger sample of tube type was used to verify the reliability of numerical analysis, and a heat exchanger of fin and tube type was used to predict the ratio of thermal contact resistance to the overall thermal resistance.

Review : Thermal contact problems at cryogenic temperature

  • Jeong, Sangkwon;Park, Changgi
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • This paper addresses technical problems of thermal contact conductance or resistance which inevitably occurs in most cryogenic engineering systems. The main focus of this paper is to examine what kind of physical factors primarily influences the thermal contact resistance and to suggest how it can be minimized. It is a good practical rule that the contact surface must have sub-micron roughness level with no oxide layer and be thinly covered by indium, gold, or Apiezon-N grease for securing sufficient direct contact area. The higher contact pressure, the lower the thermal contact resistance. The general description of this technique has been widely perceived and reasonable engineering results have been achieved in most applications. However, the detailed view of employing these techniques and their relative efficacies to reduce thermal contact resistances need to be thoroughly reviewed. We should consider specific thermal contact conditions, examine the engineering requirements, and execute each method with precautions to fulfil their maximum potentials.

A Study on the Thermal Analysis of Fire-Resistance Cable using FEM (유한요소법을 이용한 내화전선의 열해석에 관한 연구)

  • 오홍석;이상호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.338-343
    • /
    • 2004
  • In general, the insulation and protective sheaths on electrical conductors are made of combustible substances like PVC, natural or synthetic rubbers, and other organic or synthetic materials. When an electrical fire starts due to overheating of conductors/joints or sparking/arcing, the first thing to ignite is usually the insulation on the cables. When the insulation bums, the produced fumes are very toxic. To solve the problem, we have surely need the fire resistance cable that doesn't bum in a high temperature and emit toxic fume for operating a disaster prevention installation. In this paper, we have simulated the thermal analysis for the fire resistance cable according to the values of current in a overload and a short, and the values of outside flame with the fire resistance cable of the L's company product(600 V, FR-8 : Four Core) using the finite element method(Flux2D).

Effects of Accelerated Iso-Thermal Aging on Elastic-Plastic Fracture Toughness and Fracture Resistance Curve by Unloading Compliance Method in SA533B Low Alloy Steel (제하 컴플라이언스법에 의한 SA533B강의 $J_1C$ 및 J-R 곡선에 미치는 열시효 영향)

  • 윤한기;차귀준
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.157-165
    • /
    • 1994
  • Effect of an accelerated iso-thermal aging (375 degree C x 66days, 375 degree C x 200days) on elastic-plastic fracture resistance curve were examined in SA533B low alloy steel. Fracture toughness test are conducted by unloading compliance method at room temperature. But the apparent negative crack growth phenomenon, usually arise in partial unloading compliance test. The phenomenon of negative crack growth may be eliminated by the offset technique. There is no effect of aging on J sub(IC) and dJ/da in iso-thermal aged (375 degree C x 66 days) specimen, but there is very little effect in iso-thermal aged (375 degree C x 200 days) specimen.

  • PDF