• 제목/요약/키워드: thermal reduction reactor.

검색결과 65건 처리시간 0.027초

Cavitation에 의한 슬러지 가용화와 PGA를 이용한 하수고도처리에 관한 연구 (Advanced Wastewater Treatment using Sludge Solubilization by the Cavitation and PGA addition)

  • 김동하
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.449-454
    • /
    • 2008
  • Some pretreatment methods have been proposed to enhance the biodegradability and to shorten the hydrolysis reaction time. By means of efficient pretreatment the suspended solids (SS) can be made of better accessible for the anaerobic bacteria. There are several ways how this can be accomplished, which include biological, mechanical, thermal, and chemical methods. For the sludge solubilization using the cavitation phenomenon, we have tried to develop a pretreatment process consisted of a reactor and pumps. The objectives of this study were to develop a advanced wastewater treatment consisted of IABR and the cavitation with PGA. The most effective removal for organic matter and nutrients were occured when both cavitation pretreatment and ${\gamma}$-PGA were applied at the IABR process. Only small portion of ${\gamma}$-PGA at a rate of 1.38mg/L, was enough to improve sedimentation ability, SS removal efficiencies, and sludge volume reduction. After the sludge solubilization by the cavitation, SCOD increased to 193% and SS decreased to 36%. The removal ratio of BOD was 94.5%, T-N removal ratio was 85.5% and T-P removal ratio was 84.9%. The combination process of the IABR with the cavitation and PGA addition seems to be very effective alternative wastewater treatment process.

CO2 sequestration and heavy metal stabilization by carbonation process in bottom ash samples from coal power plant

  • Ramakrishna., CH;Thriveni., T;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제26권4호
    • /
    • pp.74-83
    • /
    • 2017
  • Coal-fired power plants supply roughly 50 percent of the nation's electricity but produce a disproportionate share of electric utility-related air pollution. Coal combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash and fly ash residues. These disposal coal ash residues are however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation process has been shown to have a potential for improving the chemical stability and leaching behavior of bottom ash residues. The aim of this work was to quantify the volume of $CO_2$ that could be sequestrated with a view to reducing greenhouse gas emissions and stabilize the contaminated heavy metals from bottom ash samples. In this study, we used PC boiler bottom ash, Kanvera reactor (KR) slag and calcined waste lime for measuring chemical analysis and heavy metals leaching tests were performed and also the formation of calcite resulting from accelerated carbonation process was investigated by thermo gravimetric and differential thermal analysis (TG/DTA).

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

디젤엔진 배출가스 질소산화물 저감을 위한 Solid SCR의 반응률에 관한 연구 (A Study on Reaction Rate of Solid SCR for NOx Reduction of Exhaust Emissions in Diesel Engine)

  • 이호열;윤천석;김홍석
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.183-194
    • /
    • 2013
  • Liquid urea based SCR has been used in the market to reduce NOx in the exhaust emission of the diesel engine vehicle. This system has several problems at low temperature, which are freezing below $-12^{\circ}C$, solid deposit formation in the exhaust, and difficulties in dosing system at exhaust temperature below $200^{\circ}C$. Also, it is required complicated exhaust packaging equipment and mixer due to supply uniform ammonia concentration. In order to solve these issues, solid urea, ammonium carbonate, and ammonium carbamate are selected as ammonia sources for the application of solid SCR. In this paper, basic research on reaction rate of three ammonia-transporting materials was performed. TGA (Thermogravimetric Analysis) and DTA (Differential Thermal Analysis) tests for these materials are carried out for various heating conditions. From the results, chemical kinetic parameters such as activation energy and frequency factor are obtained from the Arrhenius plot. Additionally, from test results of DSC (Differential Scanning Calorimeter) for these materials, chemical kinetic parameters using the Kissinger method are calculated. Activation energies of solid SCR from this experiment are compared with proper data of literature study, then obtained data of this experiment are used for the design of reactor and dosing system for candidate vehicle.

연료전지차량용 연료개질기에 대한 최적연료비교연구 (A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network)

  • 정익환;박찬샘;박성호;나종걸;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.720-726
    • /
    • 2014
  • PEMFC(Proton Exchange Membrane Fuel Cell) 차량은 미래 청정수송기관으로 각광받고 있지만 수소스테이션의 인프라부족으로 현재는 수소를 공급해주는 연료개질기를 함께 장착하여 구동하여야 한다. 탄화수소연료로부터 수소를 생산하는 연료개질기를 대상으로 다양한 연구가 진행되어왔는데 기존연구에서는 열적중립 조건의 ATR(Auto-Thermal Reformer) 반응기에 대해 집중적으로 분석하거나 공정최적화부문에서 최대수소생산을 목표로 주로 열효율을 목적함수로 설정하여 평가해 왔다. 본 연구에서는 100 kW PEMFC용 연료개질기를 대상으로 간단한 소형시스템을 얻기 위해 외부 유틸리티가 필요없는 단열열교환망으로 구성된 조건에서 기존 열효율이 아닌 수소효율을 새로이 정의하여 가솔린, LPG, 디젤 각 연료에 대해 최적운전조건을 도출하였다. 가솔린의 경우 기존 비교문헌보다 9.43% 연료절감효과를 얻음으로써 제안한 목적함수의 타당성을 입증하였고, 추가적으로 수소효율 및 열교환량, 열교환면적에 대한 민감도 분석을 실시하였다. 마지막으로 제안한 시스템을 한국시장에 적용할 경우 LPG 연료를 사용하는 연료개질기가 가장 경제적임을 알 수 있었다.

YSZ 첨가 페라이트 매체상에서 메탄으로부터 합성 가스 및 수소의 단계적 생산 (Stepwise Production of Syngas and Hydrogen from Methane on Ferrite Based Media Added with YSZ)

  • 제한솔;차광서;김홍순;이영석;박주식;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.50-57
    • /
    • 2010
  • Stepwise production of syn-gas and hydrogen from methane on ferrite based media added with yttria-stabilized zirconia (YSZ) was carried out using a fixed bed infrared reactor. In this study, all M-ferrite (M=Co, Cu, Mn and Ni) media were prepared by co-precipitation method, and there the YSZ was added as a binder to improve thermal stability, reactivity, and resistance against carbon deposition. Most of the ferrite media containing YSZ showed the good redox property for temperature programmed reduction/oxidation (TPR/O) tests. Notably, the Cu-substituted ferrite medium with YSZ showed the great resistance against carbon deposition as well as the good reactivity for the stepwise production of syngas and hydrogen. Furthermore, it also showed the good durability without significant deactivation during five repeated cyclic tests.

열시스템에서 생성된 SO$_{2}$ 가스의 배출저감을 위한 정전기 분무 원리의 응용 (An application of the electrostatic spray technology to increase scrubbing efficiency of SO$_{2}$ emitted from thermal systems)

  • 정재윤;변영철;황정호
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.1068-1076
    • /
    • 1997
  • Emission control of acid exhaust gases from coal-fired power plants and waste incinerators has become an increasing concern of both industries and regulators. Among those gaseous emissions, SO$_{2}$ has been eliminated by a Spray Drying Absorber (SDA) system, where the exhaust gas is mixed with atomized limestone-water slurry droplets and then the chemical reaction of SO$_{2}$ with alkaline components of the liquid feed forms sulfates. Liquid atomization is necessary because it maximizes the reaction efficiency by increasing the total surface area of the alkaline components. An experimental study was performed with a laboratory scale SDA to investigate whether the scrubbing efficiency for SO$_{2}$ reduction increased or not with the application of a DC electric field to the limestone-water slurry. For a selected experimental condition SO$_{2}$ concentrations exited from the reactor were measured with various applied voltages and liquid flow rates. The applied voltage varied from -10 to 10 kV by 1 kV, and the volume flow rate of slurry was set to 15, 25, 35 ml/min which were within the range of emission mode. Consequently, the SO$_{2}$ scrubbing efficiency increased with increasing the applied voltage but was independent of the polarity of the applied voltage. For the electrical and flow conditions considered a theoretical study of estimating average size and charge of the atomized droplets was carried out based on the measured current-voltage characteristics. The droplet charge to mass ratio increased and the droplet diameter decreased as the strength of the applied voltage increased.

인공태양을 이용한 모노리스 적용 반응기에서 2단계 열화학적 물분해 연구 (2-Step Thermochemical Water Splitting on a Active Material Washcoated Monolith Using a Solar Simulator as Heat Source)

  • 강경수;김창희;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.109-115
    • /
    • 2007
  • Solar energy conversion to hydrogen was carried out via a two-step thermochemical water splitting using metal oxide redox pair. To simulate the solar radiation, a 7 kW short arc Xe-lamp was used. Partially reduced iron oxide and cerium oxide have the water splitting ability, respectively. So, $Fe_3O_4$ supported on $CeO_2$ was selected as the active material. $Fe_3O_4/CeO_2$(20 wt/80 wt%) was prepared by impregnation method, then the active material was washcoated on the ceramic honeycomb monolith made of mullite and cordierite. Oxygen was released at the reduction step($1673{\sim}1823\;K$) and hydrogen was produced from water at lower temperature($873{\sim}1273\;K$). The result demonstrate the possibility of the 2-step thermochemical water splitting hydrogen production by the active material washcoated monolith. And hydrogen and oxygen was produced separately without any separation process in a monolith installed reactor. But the SEM and EDX analysis results revealed that the support used in this experiment is not suitable due to the thermal instability and coating material migration.

알칼리 이온 교환 Y-제올라이트의 NOx 전환에 대한 촉매 특성 및 반응성 (Characterization and the Catalytic Properties of Alkali- Exchanged Y-Zeolites on NOx Conversion)

  • 이창섭;이경희
    • 한국가스학회지
    • /
    • 제9권2호
    • /
    • pp.50-55
    • /
    • 2005
  • 본 논문에서는 알칼리 금속 이온 교환된 Y-제올라이트를 합성하여 그 성분과 구조를 여러 가지 분석법을 이용하여 확인하였으며, NOx전환 반응에 대하여 비열 플라즈마 기술과 결합한 이들의 촉매 능력에 대한 시험을 하였다. 합성된 LiY NaY KY, CsY의 NOx환원에 대한 반응성을 $100^{\circ}C$에서 $350^{\circ}C$의 온도 범위에서 NOx미터로 측정하였다. $150^{\circ}C$에서 촉매의 초기 반응성은 LiY < KY < NaY < CsY의 순으로 증가하였다. CsY와 NaY의 반응성은 온도에 따라 증가하다가 $200^{\circ}C$에서 최대에 도달하였고 그 이상의 온도에서는 오히려 감소하였다. KY의 반응성은 $200^{\circ}C$까지는 같은 수준을 유지하다가 그 이상의 온도에서는 감소한 반면 LiY의 반응성은 온도가 올라감에 따라 계속 감소하였다. 알칼리 금속 계열 중에서 반응성이 가장 좋은 CsY촉매는 $170{\~}220^{\circ}C$의 온도범위에서 $80\%$의 NOx 전환율을 나타내었다.

  • PDF

Ca 이온이 VOx/TiO2 SCR 반응에 미치는 영향 연구 (Effect of Ca Ion on the SCR Reaction over VOx/TiO2)

  • 김거종;홍성창
    • 공업화학
    • /
    • 제27권2호
    • /
    • pp.165-170
    • /
    • 2016
  • 본 연구에서는, 실제 $150000Nm^3/hr$ 규모의 연소로에서 운전된 $VO_x/TiO_2$ SCR 촉매의 활성저하 원인을 규명하고자 XRD, BET, AES ICP, $H_2$-TPR, $NH_3$-TPD 분석을 수행하였다. $TiO_2$의 상전이 및 $VO_x$의 결정화가 발생하지 않았기 때문에 열에 의한 촉매의 활성저하는 없는 것으로 나타났다. 반면, 성분 분석결과 S의 함량이 검출되지 않고 Ca이 다량 검출됨에 따라 $SO_2$에 의한 피독이 아닌 Ca에 의한 피독이 발생하였음을 확인하였으며 이러한 Ca의 피독은 $NH_3$의 흡착량을 감소시켜 반응활성을 감소시키는 것으로 나타났다.