• 제목/요약/키워드: thermal processing

검색결과 1,424건 처리시간 0.032초

나노유체의 열전도율 측정을 위한 새로운 비정상열선법 센서설계와 자료처리방법 (Development of a New Sensor and Data Processing Method in Transient Hot-wire Technique for Nanofluid)

  • 이신표;이명훈;김민태;오제명
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.210-215
    • /
    • 2003
  • A fine hot-wire is used both as a heating element and a temperature sensor in transient hot-wire method. The traditional sensor system is unnecessarily big so that it takes large fluid volume to measure the thermal conductivity. To dramatically reduce this fluid volume, a new sensor fabrication and a data processing method are proposed in this article. Contrast to the conventional and most popular two wire sensor, the new sensor system is made up of divided multiple long and short wires. Through validation experiments, it is found that the measured thermal conductivities of the glycerin are exactly same each other between the conventional and proposed new method. Also some technical considerations in arranging the multiple wires are briefly discussed.

  • PDF

FPGA implementation using a CLAHE contrast enhancement technique in the termal equipment for real time processing

  • Jung, Jin-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권11호
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose an approach for real time computation of rayleigh CLAHE using a FPGA. The contrast enhancement technique should be applied in thermal equipment having a low contrast image. And thermal equipment must be processed in real time. The CLAHE is an improved algorithm based Histogram Equalization, but the HW design is complex. A value greater than a given threshold in CLAHE should be equally distributed on the other histogram bin, this process requires iterations for the distribution. But implementation of this processing in the FPGA is constrained, so this section was implemented on the assumption of the histogram distribution or modified the operation process or implemented separately in the CPU. In this paper, we designed a distinct redistribution operation in two stages. So FPGA was designed for easy, this was designed to be distributed evenly without the assumptions and constraints. In addition, we have designed a CLAHE with the rayleigh distribution to the FPGA. The simulation shows that the proposed method provides a better image quality in the thermal image.

소형 표적 탐지를 위한 파노라믹 적외선 영상 개선 알고리즘 (Enhancement Algorithm of Panoramic Thermal Imaging Warning System for Small Target Detection)

  • 김기홍;전병균;김주영;김덕규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.400-403
    • /
    • 2003
  • This paper presents the signal processing of the panoramic thermal warning system that detects the small target such as aircraft and helicopter from afar. We develope the all round looking thermal imaging system which can scan all the way. This system acquires the panoramic images to reconstruct the IR images by revolving head of sensor typed line sensor at high speed. For detection, where the object of interest may be small, it is sometimes difficult to specify from object and background by conventional contrast enhancement methods. Therefore we use the adaptive plateau equalization algorithm each region to improve the contrast and make the hardware system which consists of the signal processing board for real-time display. We can verify the proposed method by the computer simulation and the hardware implementation.

  • PDF

진공포장한 육류제품의 열가공처리와 포장재질에 따른 저장중의 미생물성장 효과 (Effect of Thermal Processing and Packaging Materials on Microbial Growth of Vacuum Packaged a Meat Product during Storage)

  • 이종현
    • 한국포장학회지
    • /
    • 제4권1호
    • /
    • pp.33-40
    • /
    • 1997
  • The microbial growth of fresh, vacuum packaged, cook-in-bag uncured beef patties was determined in two film structures, a commercial (PE/EVOH), and super barrier ($SiO_2$ coated polyester) material. Packaged samples were cooked to internal temperature of 71 and $82^{\circ}C$ for 30 minutes, and stored in temperature abused ($23{\pm}2^{\circ}C$) and refrigerated storage ($4-6^{\circ}C$). Barrier properties had a significant effect (p<0.001) on aerobic and mesophilic growth in the abused condition. Cooking temperatures had a statistically significant effect (p<0.05) on aerobic growth in the refrigerated condition. The growth of anaerobes and psychrophiles were not significantly effected by either variables. Storage times had the most significant effect (p<0.001) for all groups of microorganisms. The physical properties of the commercial film (strength, thickness, and shrinkage) were changed after exposure to thermal treatment, while the super barrier package had actually no change.

  • PDF

얼굴인식을 위한 다중입력 CNN의 기본 구현 (Basic Implementation of Multi Input CNN for Face Recognition)

  • Cheema, Usman;Moon, Seungbin
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.1002-1003
    • /
    • 2019
  • Face recognition is an extensively researched area of computer vision. Visible, infrared, thermal, and 3D modalities have been used against various challenges of face recognition such as illumination, pose, expression, partial information, and disguise. In this paper we present a multi-modal approach to face recognition using convolutional neural networks. We use visible and thermal face images as two separate inputs to a multi-input deep learning network for face recognition. The experiments are performed on IRIS visible and thermal face database and high face verification rates are achieved.

Kinetic Data for Texture Changes of Foods During Thermal Processing

  • Lee, Seung Hwan
    • 산업식품공학
    • /
    • 제21권4호
    • /
    • pp.303-311
    • /
    • 2017
  • To automate cooking processes, quantitative descriptions are needed on how quality parameters, such as texture change during heating. Understanding mechanical property changes in foods during thermal treatment due to changes in chemical composition or physical structure is important in the context of engineering models and in precise control of quality in general. Texture degradation of food materials has been studied widely and softening kinetic parameters have been reported in many studies. For a better understanding of kinetic parameters, applied kinetic models were investigated, then rate constants at $100^{\circ}C$ and activation energy from previous kinetic studies were compared. The food materials are hardly classified into similar softening kinetics. The range of parameters is wide regardless of food types due to the complexity of food material, different testing methods, sample size, and geometry. Kinetic parameters are essential for optimal process design. For broad and reliable applications, kinetic parameters should be generated by a more consistent manner so that those of foods could be compared or grouped.

Color manipulation of silica aerogel by copper incorporation during sol-gel process

  • Lee, Sang-Seok;Park, Il-Kyu
    • Journal of Ceramic Processing Research
    • /
    • 제20권1호
    • /
    • pp.30-34
    • /
    • 2019
  • Copper (Cu)-incorporated silica aerogel was synthesized by a sol-gel process with two-step drying process for color modification. The microstructure of the silica aerogel was not affected significantly by the Cu concentration and an amorphous structure was maintained without any crystalline impurity phases. The textural properties of the silica aerogels investigated by using N2 adsorption-desorption isotherms exhibited the typical features of mesoporous materials. The pore size and porosity were not changed significantly even with the incorporation of Cu up to 1.5 M, which indicates negligible variation of thermal insulating properties. However, the color of the aerogel changed from white and light greenish to dark greenish with increasing Cu content. The color change of the silica aerogel was due to the modification of the electron energy band structure of silica by the Cu atomic levels. Therefore, the color of the silica aerogel powders could be manipulated by incorporating Cu without degrading the thermal insulating properties.

Influence of coating and annealing on the luminescence of Ga2O3 nanowires

  • Kim, Hyunsu;Jin, Changhyun;Lee, Chongmu;Ko, Taegyung;Lee, Sangmin
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.59-63
    • /
    • 2012
  • Ga2O3-core/CdO-shell nanowires were synthesized by a two step process comprising thermal evaporation of GaN powders and sputter-deposition of CdO. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses revealed that the cores and the shells of the annealed coaxial nanowires were single crystal of monoclinic Ga2O3 and FCC CdO, respectively. As-synthesized Ga2O3 nanowires showed a broad emission band at approximately 460 nm in the blue region. The blue emission intensity of the Ga2O3 nanowires was slightly decreased by CdO coating, but it was significantly increased by subsequent thermal annealing in a reducing atmosphere. The major emission peak was also shifted from ~500 nm by annealing in a reducing atmosphere, which is attributed to the increases in the Cd interstitial and O vacancy concentrations in the cores.

TEC-less 비냉각 열영상 검출기용 소형카메라 모듈 개발 (Small Camera Module for TEC-less Uncooled Thermal Image)

  • 김종호
    • 대한임베디드공학회논문지
    • /
    • 제12권2호
    • /
    • pp.97-103
    • /
    • 2017
  • Thermal imaging is mainly used in military equipment required for night observation. In particular, technologies of uncooled thermal imaging detectors are being developed as applied to low-cost night observation system. Many system integrators require different specifications of the uncooled thermal imaging camera but their development time is short. In this approach, EOSYSTEM has developed a small size, TEC-less uncooled thermal imaging camera module with $32{\times}32mm$ size and low power consumption. Both domestic detector and import detector are applied to the EOSYSTEM's thermal imaging camera module. The camera module contains efficient infrared image processing algorithms including : Temperature compensation non-uniformity correction, Bad/Dead pixel replacement, Column noise removal, Contrast/Edge enhancement algorithms providing stable and low residual non-uniformity infrared image.

열간압연용 고속도공구강롤의 열피로 및 마모특성 (Thermal Fatigue and Wear Properties of High Speed Steel Roll for Hot Strip Mill)

  • 류재화;박종일
    • 소성∙가공
    • /
    • 제6권2호
    • /
    • pp.95-101
    • /
    • 1997
  • The thermal fatigue and wear properties of high speed steel roll which was recently developed were investigated by observing microstructure, by measuring mechanical and physical properties, by conducting thermal fatigue testing, and by measuring the amount of wear in actual mill. High speed steel roll had better thermal fatigue testing, and by measuring the amount of wear in actual mill. High speed steel roll had better thermal fatigue life than high chromium iron roll, which was due to lower carbide content, higher strength, and higher thermal conductivity. The amount of wear of high speed steel roll was nearly the same as that of high chromium iron roll in the first finishing stand, which was due to the oxide formation on the roll surface. However, in the third finishing stand, the wear resistance of high speed steel roll was 2~3 times as good as that of high chromium iron roll because the former had higher hardness at high temperature.

  • PDF