• Title/Summary/Keyword: thermal processing

Search Result 1,424, Processing Time 0.026 seconds

Process Design for Improving Tool Life in Hot Forging Process (열간 단조 공정에서 금형 수명 향상을 위한 공정 설계)

  • 이현철;김병민;김광호
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • This paper explains the process design for improving tool life in the conventional hot forging process. The thermal load and the thermal softening are happened by contact between the hotter billet and the cooler tools in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool was caused by a high thermal load and long contact time between the tools and the billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affect die accuracy and tool life we wear and the plastic deformation of a tool. The newly developed techniques for predicting tool life are applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process.

Recent Research on and Development of Thermal and Pulsed Electric Field Systems for Pasteurization of Milk and Milk Products (우유 및 유제품의 열처리 및 펄스 전기장 살균 최근 연구 개발 동향)

  • Kang, Shin-Ho;Shin, Yong Kook
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Thermal pasteurization has been effectively used for decades as a method to extend the shelf life of milk and to inactivate any pathogenic bacteria that it may contain; however, it can negatively affect the nutritional properties of milk. In recent years, the food industry has sought new, less aggressive technologies that affect food freshness and its nutritive and health benefits less significantly. Various means have been used to extend the shelf life of dairy foods, such as high-pressure processing, irradiation, ohmic heating, and pulsed electric field (PEF) technologies. Of these, PEF technologies are potential alternatives to traditional thermal milk pasteurization, owing to their advantages in minimizing sensory and nutritional damage. In this review, we have primarily focused on the feasibility of applying PEF technologies to the sterilization of dairy products and briefly discussed whether they should be adopted for use in the dairy beverage industry in the future.

  • PDF

A Study on Manufacture of Phosphor Screen for Video Phone Tube (Video Phone Tube用 형광박의 제조에 관한 연구)

  • Woo, Jin-Ho
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.123-138
    • /
    • 2004
  • The video phone tube (VPT) of monochrome CRT have utilized home door phone, fish-finder and the rear watch monitors. Phosphor screen formation is made by electrodeposition spin coating and thermal transfer methods etc. Recently, thermal transfer method was developed, as a novel method, to form the phosphor surface for mnonchrom VPT. This method have advantages of simple process, automatization, clean environment, saving raw material and saving running-cost. In this study, it was developed new phosphor of VPT, and tested about phosphor paste properties. An experimental studies of VPT as a new phosphor property and improved VPT's manufacturing process shortening and brightness. As thermal transper method is a paste processing, it is important that rheology of phosphor effects on the formation of phosphor screen. Hence this paper was studied rheology properties of phosphor paste and the formation of phosphor screen had looked most suitable condition. Experimented thermal separation properties of low calcination temperature resin and the result analyzed comparison by TGA. Also, examined calcination properties to reduce remaining binder phosphor.

  • PDF

Thermal Behavior Analysis in Continuous Bloom Casting Mold (Bloom용 연속주조 몰드의 열거동 해석)

  • 정영진;김성훈;김영모;강충길
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • Continuous casting machine has been experienced a rapid development to increase productivity with high casting speed and to meet consumer's strict demands for high quality. However, because most of defects and cracks are initially formed in mold and grown into surface cracks during the post process, more specific and clear investigations upon heat transfer mechanism between mold and solidified shell are necessarily needed. In this study heat transfer coefficients which shows the characteristic of heat transfer mechanism are calculated with temperatures measured in bloom mold using optimal algorithm, and thermal analysis are investigated using the calculated heat transfer coefficients. Finally uniformity of solidified shell is investigated for high carbon steel, 0.187%C from thermal analysis.

Thermal Spalling and Resistance to Slag Attack in Porous High Alumina Ceramic (According to Pore Size) (고Alumina질 다공성 세라믹스의 내열충격성 및 내Slag성 (기공크기에 따른))

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.747-753
    • /
    • 1993
  • The investigation was carried out to study the behaviors of the pore size and porosity, the mechanical strength, the resistance to thermal spallings and slag attacks according to particle sizes of starting raw materials in porous high Alumina ceramics. This porous ceramics have been used in processing of the clean steel by the blowing of the inert gas. The required properties in the practice are the suitable pores size, the sharp pores distribution for a uniform blowing of the gas, the strong corrosion resistance to slags and molten metals and the resistance to thermal spalling. The optimized properties in porous high alumina ceramics of the specimen No. 3 was found to be the very low slag intrusion and the superior resistance to thermal spalling because of the suitable pore size of 2.5${\mu}{\textrm}{m}$, the porosity of 30% and the high sinterability.

  • PDF

Research on the Cooling Characteristics of Hot Stamping Process with Thermal Conductivity Die Steel (금형 열전도율에 따른 핫스탬핑 공정 냉각 특성 연구)

  • Lee, K.;Jung, M.U.;Seok, J.S.;Suh, C.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.171-176
    • /
    • 2018
  • In this study, the cooling characteristics of dies were investigated in the hot stamping process of front pillars for automobile. Two identical dies were manufactured out of tool steels with different thermal conductivities. The dies were designed with curved channels for uniform cooling of the blank. Computational fluid dynamics (CFD) simulations were also carried out, which can consider the heat transfer among the coolant, die, and blank. Measured and simulated thermal histories of dies were compared, and it was shown that high conductivity tool steel has an excellent cooling capacity compared to conventional tool steel.

Analysis of the Stress Characteristics of Double Layered Tube at Elevated Temperature (고온에서 이중튜브의 열응력특성해석)

  • Kim, E.H.;Jang, J.H.;Park, S.P.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.405-410
    • /
    • 2010
  • Double layered tube that has been used for transportation and oil piping system is occasionally exposed to elevated temperature. The change in stress state at elevated temperature is important for the safe design of double layered tube. In this study, the variation of stress state for hydroformed double layered tube of which inner tube is stainless steel and outer tube is mild steel has been analytically analyzed. To characterize the thermal stress at elevated temperature, analytical model to provide thermal stresses between outer tube and inner tube was developed by using theories of elasticity and Lame equation. The feasibility of analytical model is verified by finite element analysis using ANSYS $CLASSIC^{TM}$, commercially available code. The variation of thermal stress at various thickness combination of inner and outer tube has also been investigated by proposed analytical model.

Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2005
  • We investigated thermal, rheological, morphological and mechanical properties of a binary blend of poly(lactic acid) (PLA) and poly(butylene succinate adipate) (PBSA). The blends were extruded and their molded properties were examined. DSC thermograms of blends indicated that the thermal properties of PLA did not change noticeably with the amount of PBSA, but thermogravimetric analysis showed that thermal stability of the blends was lower than that of pure PLA and PBSA. Immiscibility was checked with thermal data. The rheological properties of the blends changed remarkably with composition. The tensile strength and modulus of blends decreased with PBSA content. Interestingly, however, the impact strength of PLA/PBSA (80/20) blend was seriously increased higher than the rule of mixture. Morphology of the blends showed a typical sea and island structure of immiscible blend. The effect of the blend composition on the biodegradation was also investigated. In the early stage of the degradation test, the highest rate was observed for the blend containing $80wt\%$ PBSA.

Thermal Analysis of Mg Hydride by Sievert's Type Automatic Apparatus (Sievert's type 자동장치에 의한 마그네슘 수소화합물의 열분석)

  • Han, Jeong Seb;Park, Kyung Duck
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1123-1129
    • /
    • 2010
  • In order to apply the Sievert's type automatic apparatus to thermal analysis of hydrogen absorbing materials, the dehydrogenation of the Mg-H system was investigated. As the initial wt% of hydrogen was increased to 4.4, the peak temperature of evolution rate shifted to higher temperature. However, with the initial wt% of hydrogen higher than 4.4, peak temperature of evolution rate did not change. The peak temperatures of evolution rate obtained by automatic apparatus were almost the same as those measured by a manual apparatus. As the heating rate was increased, the peak temperatures increased; the peak temperatures for heating rates 1, 2 and 3 K/min were 664, 687 and 702 K, respectively. The activation energy for the decomposition of Mg hydride was 101 kJ/mol. The Sievert's type automatic apparatus can be successively applied to the thermal analysis of metal hydride.

Pasteurization of dairy products (우유와 유제품의 살균기술)

  • Choi, Hyosu;Oh, Namsu
    • Food Science and Industry
    • /
    • v.53 no.3
    • /
    • pp.256-263
    • /
    • 2020
  • Milk pasteurization is used to destroy harmful bacteria present in the raw milk for improvement of the keeping quality of dairy products. It is generally carried out in dairy industries as the heating process of raw milk in properly designed and operated equipment to a specific temperature for a specified a specified period. However, thermal processing may cause quality changes in milk as well as significant nutritional losses. Hence, many researchers have started work to design alternative strategies to produce safer foods with minimal thermal treatments for pasteurization. Therefore, the present paper shows the current status of commercial pasteurization system of dairy products in korean industry and the research efforts carried out by researchers on novel milk pasteurization system that could be an alternative to traditional thermal processes for maintaining the freshness of dairy products.