• 제목/요약/키워드: thermal power generation plant

검색결과 152건 처리시간 0.027초

저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션 (Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation)

  • 백영진;김민성;장기창;이영수;윤형기
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.145-151
    • /
    • 2010
  • 본 연구에서는 지열발전 등과 같은 저온 열원을 에너지원으로 하는 발전에 응용될 수 있는 흡수식 동력 사이클의 출력 최적화를 수행하였다. 이를 위해 정상상태 사이클 시뮬레이션을 수행하여 사이클의 성능을 고찰하였다. 시뮬레이션은 열원과 열침의 입구온도 및 유량을 고정한 상태에서 수행하였으며, 일반적인 발전소의 열원-열침 유량비를 고려하였다. 사이클의 성능은 두 개의 독립변수를 이용하여 나타내었는데, 이는 분리기 입구 암모니아 농도와 터빈 입구 압력이다. 시뮬레이션 결과, $100^{\circ}C$의 지열수와 $20^{\circ}C$의 냉각수(지열수 유량의 5배) 조건에서, 흡수식 동력 사이클을 이용하면 지열수 유량 1 kg/s 당 최대 약 14 kW의 출력을 얻을 수 있음을 보였다.

최적전원차성을 위한 절감 시뮬레이션 방법의 개발 (The Development of the Simplified Simulation Technique for the Best Generation Mix)

  • 송길영;최재석
    • 대한전기학회논문지
    • /
    • 제37권6호
    • /
    • pp.339-349
    • /
    • 1988
  • The simplified simulation technique for the best generation mix is developed and the studied results are described. The best generation mix over study time from the economic point of view can be easily constructed by this technique. Generator maintenance, the operation of pumpgenerator and LNG thermal generator with limited energy are simulated variously, so a role of each generator is also easily evaluated. Through parametric analysis, useful planning guide points are obtained for the best generation mix transition, nuclear power plant construction cost, ruanium cost , oil cost, coal cost and midnight factor in the study case corresponding to real power system size model.

  • PDF

미분탄 연소의 감시 관리를 위한 화염영상 감시 및 발전용 보일러 적용시험 (The Flame Image Observation for Monitoring Management of Pulverized Coals Firings and its Feasibility Test to Boilers for Thermal Power Plant)

  • 백운보
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.92-98
    • /
    • 2008
  • The flame image observation and analysis has been investigated for combustion monitoring and management of the pulverized coal firing for thermal power plant, especially for lower nitrogen oxide generation and safer operation. We aimed at obtaining the relationship between burner flame image information and emissions of nitrogen oxide and unburned carbon in furnace utilizing the flame image processing methods, by which we quantitatively determine the conditions of combustion on the individual homers. Its feasibility test was undertaken with Samchonpo thermal power plant #4 unit which has 24 burners, through which the system was observed to be effective for evaluating the combustion conditions and continuous monitoring to prevent future loss of ignition.

화력발전소의 미세먼지 배출특성 (Emission Characteristics of Fine Particles from Thermal Power Plants)

  • Park, Sooman;Lee, Gayoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.455-460
    • /
    • 2020
  • In order to identify the characteristics of fine particle emissions from thermal power plants, this study conducted measurement of the primary emission concentration of TPM, PM10 and PM2.5 according to Korea standard test method (ES 01301.1) and ISO 23210 method (KS I ISO 23210). Particulate matters were sampled in total 74 units of power plants such as 59 units of coal-fired power plants, 7 units of heavy oil power plants, 2 units of biomass power plant, and 6 units of liquid natural gas power plants. The average concentration of TPM, PM10, PM2.5 by fuel are 3.33 mg/m3, 3.01 mg/m3, 2.70 mg/m3 in coal-fired plant, 3.02 mg/m3, 2.99 mg/m3, 2.93 mg/m3 in heavy oil plant, 0.114 mg/m3, 0.046 mg/m3, 0.036 mg/m3 in LNG plant, respectively. These results of TPM, PM10 and PM2.5 were satisfied with the standards of fine dust emission allowance in all units of power plants, respectively. Also, this study evaluated the characteristics of fine particle emissions by conditions of power plants including generation sources, boiler types and operation years and calculated emission factors and then evaluated fine particle emissions by sources of electricity generation.

초본계 바이오매스 활용 석탄발전소 연료전환 모형 경제성분석 연구 (An Economical Analysis on Fuel Switching Model of Coal Power Plant using Herbaceous Biomass)

  • 엄병환;강찬호
    • 한국농공학회논문집
    • /
    • 제61권3호
    • /
    • pp.89-99
    • /
    • 2019
  • The project to utilize kenaf as thermal power plant fuel has a positive effect on the unused energy utilization, greenhouse gas reduction, and farm income. However, it is analyzed that it is difficult to secure economical efficiency because the fuel cost of kenaf is higher than that of power by thermal power plant and Renewable Energy Certification (REC). The project of power generation using kenaf is meet the government's major policies, while government support is essential for securing economical efficiency. As a result of the sensitivity analysis on the ratio of the government subsidies, to secure economical efficiency, the power generation prices using kenaf through the direct financial support of the government indicate that 47% and 76% of kenaf fuel cost are supported by government in case of the Saemangeum reclamation and Gangneung-si, respectively. In the case of the government indirect policy support, if kenaf is included as a renewable energy source of Renewable Energy Portfolio Standard and REC is granted, the economic efficiency of Saemangeum reclamation and Gangneung-si is obtained when REC secured at 1.05 or more and 2.43 or more, respectively. The results of this study are meaningful in that the direct and indirect effects of the government on the development of the herbaceous energy crop, kenaf, were evaluated economically. These results are to suggest the need for demonstration study, but economics analyze and evaluate are necessary based on operational data through the demonstration phase in the future.

서천화력 발전기 및 제어시스템 모델링 (Power Generation Unit Modelling in Thermal Power Plant)

  • 김용학;김태균;추진부;주준영;송석하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.15-18
    • /
    • 2003
  • This paper provides the procedure to derive model parameters from the field tests. Since the accuracy of power system analysis depends on the accuracy of models used to represent the generation units, the reliability of power system analysis could be affected by parameters used in those models. The objective of this paper is to validate and update the models. So the field test had performed for thermal units and adjusting the variables to match with the measured values derived their model parameters. And the model parameters are verified by comparing the variables between models.

  • PDF

온라인 웹기반 원전 터빈 사이클 열성능 분석 시스템 (Web-Based On-Line Thermal Performance Analysis System for Turbine Cycle of Nuclear Power Plant)

  • 최기상;최광희;지문학;홍승열;김성근
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.409-416
    • /
    • 2005
  • We need to develop a on-line thermal performance analysis system for nuclear power plant to determine performance status and heat rate of turbine cycle. We have developed PERUPS(PERformance Upgrade System) to aid the effective performance analysis of turbine cycle. Procedures of performance calculation are improved using several adaptations from standard calculation algorithms based on PTC(Performance Test Code). Robustness in the on-line performance analysis is increased by verification & validation scheme for measured input data. The system also provides useful web interfaces for performance analysis such as graphic heat balance of turbine cycle and components, turbine expansion lines, automatic generation of analysis report. The system was successfully applied for YongGwang nuclear plant unit #3,4.

Solar tower combined cycle plant with thermal storage: energy and exergy analyses

  • Mukhopadhyay, Soumitra;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.29-45
    • /
    • 2016
  • There has been a growing interest in the recent time for the development of solar power tower plants, which are mainly used for utility scale power generation. Combined heat and power (CHP) is an efficient and clean approach to generate electric power and useful thermal energy from a single heat source. The waste heat from the topping Brayton cycle is utilized in the bottoming HRSG cycle for driving steam turbine and also to produce process steam so that efficiency of the cycle is increased. A thermal storage system is likely to add greater reliability to such plants, providing power even during non-peak sunshine hours. This paper presents a conceptual configuration of a solar power tower combined heat and power plant with a topping air Brayton cycle. A simple downstream Rankine cycle with a heat recovery steam generator (HRSG) and a process heater have been considered for integration with the solar Brayton cycle. The conventional GT combustion chamber is replaced with a solar receiver. The combined cycle has been analyzed using energy as well as exergy methods for a range of pressure ratio across the GT block. From the thermodynamic analysis, it is found that such an integrated system would give a maximum total power (2.37 MW) at a much lower pressure ratio (5) with an overall efficiency exceeding 27%. The solar receiver and heliostats are the main components responsible for exergy destruction. However, exergetic performance of the components is found to improve at higher pressure ratio of the GT block.

500 MW 화력발전소 고압 증기 배관 손상 원인 분석 (Failure Analysis on High Pressure Steam Piping of 500 MW Thermal Power Plant)

  • 김정면;정남근;양경현;박민규;이재홍
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권4호
    • /
    • pp.323-330
    • /
    • 2019
  • 500 MW 표준 석탄화력발전소는 국내에서 가장 큰 용량의 규격화된 발전소로써 20년 넘게 국내 전력생산에 중추적인 역할을 수행하고 있다. 장기간 사용으로 인한 경년 열화와 더불어 최근 석탄화력발전소의 대기오염 문제가 대두되면서 석탄화력발전소 가동률 제한 정책에 따른 잦은 기동·정지에 의해 발전 설비의 고장 확률이 증가하고 있다. 그 중 증기 배관은 보일러에서 만들어진 고온·고압의 증기를 전력생산을 위해 터빈으로 이송시키는 중요한 역할을 하는 설비로 최근 국내 대용량 발전소 증기 배관의 고장 사례가 빈번하게 발생하고 있다. 이에 본 연구에서는 국내 500 MW 표준 석탄화력발전소 주증기배관 연결 용접부에 반복적으로 발생된 손상에 대해 손상 해석을 수행하였다. 동일 규격의 타 발전소에서 발생될 수 있는 고장의 사전 예방을 위해 균열부 금속 조직 분석과 배관 응력 해석을 통해 배관 지지 구조에 의한 고 응력에 의해 발생된 원인을 규명하고 고 응력부 응력 저감을 위한 지지 구조 개선 방안을 제시하였다.

최근 3년간 수입 유연탄 분석 및 연소열성능 해석을 활용한 석탄화력 발전소 탄종 경제성 평가 연구 (Economic Evaluation of Coals Imported in Last 3 Years for Power Plant Based on Thermal Performance Analysis)

  • 백세현;박호영;고성호
    • 한국연소학회지
    • /
    • 제18권3호
    • /
    • pp.44-53
    • /
    • 2013
  • In this study, the economic evaluation for imported coals was conducted for power plant based on thermo-dynamical performance analysis. The number of coal types considered was 1,755 imported by five power generation companies in Korea during the 2010-2012. The higher heating value (HHV) of the coals ranged 4,000-6,500 kcal/kg, mostly sub-bituminous. The 1D thermo-dynamical performance modeling was performed for a 500 MWe standard power plant using PROATES code. It was founded that the low rank coals had negative effects on the plant efficiency mainly due to the increased heat loss by moisture, hydrogen and flue gas. Based on the performance analysis, the economic performance of the coals was evaluated. The apparent price of low-rank coals tended to be significantly lower than design coal; for example, the unit price of coal with a HHV of 4,000 kcal/kg was 57% of the reference coal having 6,080 kcal/kg. Considering the negative effects leading to a decrease in the thermal performance, heating value compensation, and increased parasite load, the corrected unit cost for the coal with 4,000 kcal/kg was 90.7% of the reference coal. Overall, the cost saving by imported coals was not high as expected.