• Title/Summary/Keyword: thermal polymerization

Search Result 471, Processing Time 0.027 seconds

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

Synthesis and Characterization of Polyurethane bead/silica Hybrid Composites (폴리우레탄 비드/실리카 복합체의 합성 및 그 특성)

  • Yang, Seung Nam;Yim, Gie Hong;Kim, Nam Ki
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.386-390
    • /
    • 2007
  • In this study, polyurethane prepolymers were synthesized from polycaprolactonediol (PCDs. M.W. 530, 830, 1000, 1250, and 2000) and polycaprolactonetriol (PCTs. M.W. 300 and 900), and hexamethylenediisocyanate (HMDI). Polyurethane beads was prepared from the different prepolymers by a two-step suspension polymerization. The particle size of polyurethane beads was investigated by particle size analyzer. The beads were $10{\sim}30{\mu}m$ in size. The structure of beads was confirmed by FT-IR spectrometer. Their thermal properties were analyzed by TGA. Glass transition temperatures ($T_g$) of the beads were in the range of $-23{\sim}-53^{\circ}C$ and decreased with the increase of the PCD molecular weight. In order to prevention the cohesion of beads, the beads were coated with tetraethoxysilane (TEOS).

Preparation and Properties of Polyorganosiloxane Modified Maleated EPDM/EPDM Rubber Vibration Isolator (Polyorganosiloxane 변성 말레화 EPDM/EPDM 방진고무의 제조와 그 특성)

  • Kang, Doo-Whan;Kim, So-Mi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.581-585
    • /
    • 2010
  • The surface of Alnico, one of the industrial dust waste, was treated with 1,3,5-trivinyl-1,3,5-trimethylcyclotrisilazane (VMS) as a surface treating agent and used as the filler for vibration isolator rubber. Maleated EPDM prepared from bulk polymerization of EPDM with maleic anhydride was copolymerized with ${\alpha},{\omega}$-bis(3-aminopropyl)polydimethylsiloxane to obtain maleated EPDM-polydimethylsiloxane copolymer (MEPDM-PDMS). EPDM/Alnico/MEPDM-PDMS vibration isolator rubber was prepared from compounding with Alnico treated with surface treating agent, 25 and 50 phrs to EPDM, respectvely based on 1 to 10 wt% of MEPDM-PDMS to EPDM. From the measurement of the thermal properties to the rubber, the glass transition temperatures (Tg) for the rubber containing maleated EPDM-PDMS copolymer was slightly lower temperature, $33^{\circ}C$ than EPDM rubber, and also DMA results showed higher tan ${\delta}$ peak to the rubber prepared from compounding with EPDM-PDMS copolymer. From the results, rubber prepared using EPDM-PDMS copolymer had better vibration isolator property.

Inhalation Toxicity of Bisphenol A and Its Effect on Estrous Cycle, Spatial Learning, and Memory in Rats upon Whole-Body Exposure

  • Chung, Yong Hyun;Han, Jeong Hee;Lee, Sung-Bae;Lee, Yong-Hoon
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.165-171
    • /
    • 2017
  • Bisphenol A (BPA) is a monomer used in a polymerization reaction in the production of polycarbonate plastics. It has been used in many consumer products, including plastics, polyvinyl chloride, food packaging, dental sealants, and thermal receipts. However, there is little information available on the inhalation toxicity of BPA. Therefore, the aim of this study was to determine its inhalation toxicity and effects on the estrous cycle, spatial learning, and memory. Sprague-Dawley rats were exposed to 0, 10, 30, and $90mg/m^3$ BPA, 6 hr/day, 5 days/week for 8 weeks via whole-body inhalation. Mortality, clinical signs, body weight, hematology, serum chemistry, estrous cycle parameters, performance in the Morris water maze test, and organ weights, as well as gross and histopathological findings, were compared between the control and BPA exposure groups. Statistically significant changes were observed in serum chemistry and organ weights upon exposure to BPA. However, there was no BPA-related toxic effect on the body weight, food consumption, hematology, serum chemistry, organ weights, estrous cycle, performance in the Morris water maze test, or gross or histopathological lesions in any male or female rats in the BPA exposure groups. In conclusion, the results of this study suggested that the no observable adverse effect level (NOAEL) for BPA in rats is above $90mg/m^3$/6 hr/day, 5 days/week upon 8-week exposure. Furthermore, BPA did not affect the estrous cycle, spatial learning, or memory in rats.

High Proton Conductivity Crosslinked Sulfonated Polyimide Membranes (높은 수소이온전도성을 가진 가교술폰화폴리이미드막)

  • Lee, Chang-Hyun;Park, Chi-Hoon;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.61-63
    • /
    • 2003
  • A major research objective related to proton exchange membrane(PEM) for DMFC is to achieve high proton conductivity over 10$^{-2}$ S/cm, high hydrolytic stability and low methanol permeability with low cost base materials. for the purpose, a lot of thermoplastic polymers such as polysulfones, polyethersulfone, polyetherketones, polyimides, polyoxadiazole, polyphosphazene and polybenzimidazol have been investigated. Amongst those polymers, polyimides have been suggested as a potential PEM due to their excellent thermal, chemical stability and good mechanical properties. Generally, polyimides are synthesized by polycondensation with numerious diamines and dianhydriedes. In our study, polyimide was prepared using non-sulfonated diamine, sulfonated diamine directly synthesized by fuming sulfuric acid, and naphthalenic dianhydride to improve the hydrolysis stability under acidic condition. Through monomer sulfonation-subsequent polymerization method, the high proton conducting capability and the desired sulfonation level were effectively controlled at the same time. To reduce severe methanol transport through the membrane, the chemical crosslinking among polymer chains was introduced using various crosslinking agents with different chain lengths. The crosslinked sulfonated polyimide membranes showed high proton conductivity up to 8.09$\times$10$^{-2}$ S/cm and from crosslinking effect methanol transport through the membranes was considerably reduced as compared with unmodified membranes. For increase of chain length of crosslinker, methanol permeability was adversely reduced to 10$^{-8}$ $\textrm{cm}^2$/s due to decrease of IEC and increase of crosslinking desity.

  • PDF

Effects of Separator Carbonization on the Characteristics of Aluminium Polymer Condenser (알루미늄 고분자 콘덴서의 특성에 대한 절연지 탄화의 영향)

  • Kim, Jae Kun;Yu, Hyung Jin;Hong, Yoong He;Park, Mi Jin;Park, Seung Youl
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.539-546
    • /
    • 2006
  • A study on the polymerization of polyethylenedioxythiophene (PEDOT) and the carbonization process of a separator was carred out in order to apply conductive polymer PEDOT to the winding typed aluminum condenser as a solid electrolyte and a negative electrode. PEDOT was polymerized with ethylenedioxythiophene (EDOT) as a monomer and ferric-p-toluenesulfonate as an oxidizing agent. The separator of condenser element was carbonized to control its fibrous tissue for the purpose of making it easy to impregnate the PEDOT solution into the microporous etched pit of aluminum foil by preventing separator from concentrating the PEDOT solution on itself. The characteristics of condenser such as capacitance, dissipation factor, equivalent series resistance, and thermal resistance depended on a carbonization temperature and a carbonization time. It was found that a thickness and a density of the used separator were major parameters of carbonization process and the characteristics of condenser were affected by these parameters.

Mechanical Properties and Reliability of Sand Casting 3D Printing Materials (사형 주조 3D 프린팅용 소재의 기계적 특성 및 신뢰성)

  • Son, Hyeon Jin;Jang, Seongwan;Lee, Hwan Jong;Yang, Jeong Jik;Jeong, Yeong Geun;Bae, Chang-Jun
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • Sand casting 3D printing uses a binder jetting method to produce a mold having complicated shape by spraying a binder on sand coated with activator. Appropriate heat treatment process in sand mold fabrication can increase the degree of polymerization to improve flexural strength. However, long heat treatment of over 24 hours decreases flexural strength and reliability due to chemical bond decomposition through thermal degradation. The main role of the activator is to control the reaction rate between the polymer chains. As a result, when the activator composition is increased from 0.15 wt% to 0.25 wt%, the flexural strength is increased by 218 N/㎠. However, excess activator (0.40 wt%) has been shown to decrease reliability without increasing flexural strength. The main role of the binder is to control the flexural strength of the specimen. As the binder composition is increased from 2.00 wt% to 4.00 wt%, the flexural strength increases to about 255 N/㎠, indicating the maximum flexural strength increase. Finally, the reliability of the flexural strength of the fabricated specimens is evaluated by a Weibull plot. Weibull modulus calculations are used to evaluate the flexural strength reliability of the specimens, and maximum reliability value of 11.7 is obtained at 0.20 wt% activator composition. Therefore, it is confirmed that this composition has maximum flexural strength reliability.

Synthesis and Characterization of Cellulose-Hybrid Polystyrene Nanoparticles by Using Reactive Hydroxypropyl Methylcellulose Phthalate (반응형 히드록시프로필 메틸셀룰로오스 프탈레이트를 이용한 셀룰로오스 혼성 폴리스티렌 나노입자의 합성 및 특성 분석)

  • Cheong In-Woo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.437-444
    • /
    • 2006
  • Reactive hydroxypropyl methylcellulose phthalate (reactive HPMCP) was synthesized by using a stepwise urethane reaction with isophorone diisocyanate (IPDI) and 2-hydroxyethyl moth acrylate (HEMA). Molecular weight, acid number, and critical micelle concentration (CMC) of the synthesized reactive HPMCP and pristine HPMCP were measured and used as a polymeric surfactant in the emulsion polymerizations of styrene. In the preparation of HPMCP-hybrid poly styrene nanoparticles, 6, 9, 12, 18, and 24 wt% of HPMCPs were introduced, and the maximum rate of polymerization ($R_{p,max}$), the average number of radicals per particle (n), particle size distribution were investigated. In addition, core - shell morphology of the nanoparticles were observed by using TEM and their thermal stabilities were measured by using TGA. Reactive HPMCP showed higher $R_{p,max}$, smaller particle size, larger values of n and gel contents as compared with pristine HPMCP, due to the vinyl groups from HEMA, which can be reacted with styrene oligomers, in the reactive HPMCP.

Synthesis and Properties of Nonfluoro Aminated Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) Anion Exchange Membranes for MCDI Process (막 축전식 탈염용 비불소계 아민화 Poly(vinylbenzyl chloride-co-ethyl methacrylate-co-styrene) 음이온교환막의 합성 및 특성)

  • Koo, Jin-Sun;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.564-572
    • /
    • 2012
  • A terpolymer of vinylbenzyl chloride-co-ethyl methacrylate-co-styrene (VBC-EMA-St) was prepared for membrane capacitive deionization (MCDI) by radical polymerization and amination reaction of various amination times. Nonfluoro aminated VBC-EMA-St anion-exchange membranes were characterized by Fourier transform infrared (FTIR) spectrometry. Molecular weight, polydispersity and thermal stability were obtained by gel permeation chromatography (GPC) and thermogravimetric analysis (TGA). The basic properties such as water uptake, ion exchange capacity, electrical resistance and CDI charge-discharge current were measured. The optimal values of ion exchange capacity, water uptake, electrical resistance and molecular weight of synthesized anion-exchange membrane were 1.69 meq/g, 23.7%, 1.61 ${\Omega}{\cdot}cm$ and $3.4{\times}10^4$ g/mol, respectively. As compared with conventional membrane, the pattern of cyclic charge-discharge current of synthesized anion-exchange membrane indicated efficient electrosorption and desorption.

Synthesis and Characterization of Thermoplastic Elastomer Poly(ether-b-amide) Containing Aromatic Moiety (방향족 구조가 포함된 열가소성 탄성체 Poly(ether-b-amide)의 합성 및 특성)

  • Lee, Ji Hun;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.596-601
    • /
    • 2014
  • Polyamide (PA) oligomers, which are the hard segment of poly(ether-block-amide) (PEBA), presenting thermoplastic and high performance elastomeric properties were prepared by polycondensation between 4-aminobenzoic acid and 12-aminododecanoic acid. Subsequently PEBAs were obtained by addition polymerization of the PA oligomers and various molecular weights of poly(tetramethylene glycol) (PTMG). The structure of the final PEBA was identified by using FTIR and $^1H$ NMR and the thermal properties depending on changes in the structure of hard segment were collected by using DSC and UTM analysis. As the results, the melt temperature ($T_m$), the initial modulus, and the maximum strength of PEBAs increased with an increase in aromatic moiety up to 30% without reducing crystallinity.