• Title/Summary/Keyword: thermal polymerization

검색결과 470건 처리시간 0.027초

견섬유에 대한 메타크릴아미드의 처리효과 II. 메타크릴아미드 처리견의 열적 거동에 관하여 (Effects of Methacrylamide Treatment on Silk Fibers II. Thermal Behavior of Methacrylamide-treated Silk Fibers)

  • 신봉섭;남중희
    • 한국잠사곤충학회지
    • /
    • 제34권1호
    • /
    • pp.49-56
    • /
    • 1992
  • 반응개시제로 potassium persulfate를 사용하여 견섬유에 MAA를 처리하였을 때의 반응 mechanism을 구명하기 위하여, 열분석과 일련의 기구분석을 행하였으며, 이 중 열분석에 의해 얻어진 결과는 다음과 같다. Differential scanning calorimeter 관찰로부터는 metharcrylamide에 의한 가공견섬유는 견 fibroin과 methacrylamide polymer의 열분석에 의한 peak가 뚜렷하게 분리되어 나타났으며, 가공율이 증가함에 따라 두 peak가 모두 고온측으로 이동하는 것으로 나타났다. 가공견섬유의 흡습율은 가공율이 증가함에 따라 증가하였다.

  • PDF

Preparation and Properties of Silicone Hydrogel Material Containing Silane Group with Cobalt Oxide Nanoparticles through Thermal Polymerization

  • Lee, Min-Jae;Kong, Ki-Oh;Sung, A-Young
    • 한국재료학회지
    • /
    • 제30권6호
    • /
    • pp.273-278
    • /
    • 2020
  • This research is conducted to analyze the compatibility of used monomers and produce the high functional hydrogel ophthalmic polymer containing silane and nanoparticles. VTMS (vinyltrimethoxysilane), TAVS [Triacetoxy(vinyl)silane] and cobalt oxide nanoparticles are used as additives for the basic combination of SilM (silicone monomer), MMA (methyl methacrylate) and MA (methyl acrylate). Also, the materials are copolymerized with EGDMA (ethylene glycol dimethacrylate) as cross-linking agent, AIBN (thermal polymerization initiator) as the initiator. It is judged that the lenses of all combinations are optically excellent and thus have good compatibility. Measurement of the optical and physical characteristics of the manufactured hydrophilic ophthalmic polymer are different in each case. Especially for TAVS, the addition of cobalt oxide nanoparticles increases the oxygen permeability. These materials are considered to create synergy, so they can be used in functional hydrogel ophthalmic lenses.

Thermal Hazard Evaluation on Self-polymerization of MDI

  • Sato, Yoshihiko;Okada, Ken;Akiyoshi, Miyako;Murayama, Satoshi;Matsunaga, Takehiro
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.6-11
    • /
    • 2010
  • Thermal analysis, heating test on gram scale and simulation of exothermic behavior based on kinetic analysis has been conducted in order to evaluate thermal hazards of self-polymerization of MDI. The exothermic reactions of MDI are expected to be the polymerization which forms carbodiimide and carbon dioxide, dimerization and trimerization. When MDI is kept in adiabatic condition during 1 week (10080 hours), the simulated result shows runaway reaction can occur in the case that initial temperature was more than $130^{\circ}C$. The relationship between the initial temperature (T, $^{\circ}C$) and TMR is given in a following equation. TMR=$4.493{\times}10^{-7}$ exp ($9.532{\times}10^3$/(T+273.15)) We propose that the relationship gives important criteria of handling temperature of MDl to prevent a runaway reaction.

Reaction Condition Dependency of Propagating Behavior in the Polymerization Reaction by Thermal Front

  • Huh, Do-Sung;Choe, Sang-Joon;Lee, Burm-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.325-329
    • /
    • 2002
  • In this study, the dependency of the behavior of propagating front on the reaction condition in frontal polymerization reaction has been studied. We have used some multifunctional acrylates as a monomer and ammonium persulfate as an initiator for the polymerization reactions. In frontal polymerization, a method of producing polymeric materials via a thermal front that propagates through the unreacted monomer/initiator solution, the behavior of self propagating front shows various dynamic patterns depending on the reaction condition. We have obtained some spin modes of propagating front in the number of 'hot spots' or 'spin heads' by changing the reaction condition. The effect of the reactor tube diameter on the mode of propagating front has also been studied by using some reactor tubes with different size of tube diameter and it has been examined in some detail by adopting an experimental method of two-tubes system.

벌크 중합법에 의한 폴리스티렌 중합공정의 열적위험성 (Thermal Hazards of Polystyrene Polymerization Process by Bulk Polymerization)

  • 한인수;이정석;이근원
    • 한국가스학회지
    • /
    • 제17권4호
    • /
    • pp.1-8
    • /
    • 2013
  • 본 연구에서는 벌크 중합법을 이용한 폴리스티렌 중합공정의 폭주반응에 대한 열적 위험성을 가속속도열량계(ARC)와 소규모 반응열량계(MM)를 이용하여 평가하였다. 당해 중합공정은 반응온도 $120^{\circ}C{\sim}130^{\circ}C$로 운전되어져야 하며, $130^{\circ}C$ 이상의 반응온도에서는 반응 생성물의 급격한 점도 증가로 인하여 반응기의 온도제어 실패에 따른 폭주반응의 위험성이 존재하였다. 또한 당해 중합공정의 반응온도($120^{\circ}C{\sim}130^{\circ}C$)에서 공정운전 초기에 반응기의 냉각실패가 발생할 경우 폭주반응으로 인해 반응기의 온도와 압력이 각각 30 ~ 50분 이내에 약 $340^{\circ}C$, 5.3 bar 까지 급격히 상승하여 반응기의 파열판이 파열되거나 반응기가 폭발할 수 있는 열적 위험성이 높게 나타났다.

Titanium Complexes: A Possible Catalyst for Controlled Radical Polymerization

  • Kwark, Young-Je;Kim, Jeong-Han;Novak Bruce M.
    • Macromolecular Research
    • /
    • 제15권1호
    • /
    • pp.31-38
    • /
    • 2007
  • Pentamethylcyclopentadienyltitanium trichloride, bis(cyclopentadienyl)titanium dichloride ($Cp_2TiCl_2$), and bis(pentamethylcyclopentadienyl)titanium dichloride were used in the polymerization of styrene without the aid of Group I-III cocatalysts. The properties of the resulting polymer indicated that polymerization was more controlled than in thermal polymerization. The kinetic studies indicated that a lower level of termination is present and that the polymer chain can be extended by adding an additional monomer. To elucidate the mechanism of polymerization, a series of experiments was performed. All results supported the involvement of a radical mechanism in the polymerization using $Cp_2TiCl_2$. The possibility of atom transfer radical polymerization (ATRP) mechanism was investigated by isolating the intermediate species. We could confirm the activation step from the reaction of 1-PEC1 with $Cp_2TiCl$ by detecting the coupling product of the generated active radicals. However, the reversible deactivation reaction competes with other side reactions, and it detection was difficult with our model system.

Preparation of Poly(methyl methacrylate)/Na-MMT Nanocomposites via in-Situ Polymerization with Macroazoinitiator

  • Jeong Han Mo;Ahn Young Tae
    • Macromolecular Research
    • /
    • 제13권2호
    • /
    • pp.102-106
    • /
    • 2005
  • Poly(methyl methacrylate) (PMMA)/sodium montmorillonite (Na-MMT) nanocomposites were prepared with a novel method utilizing a macroazoinitiator (MAI). To induce the intergallery polymerization of methyl methacrylate (MMA), the MAI containing a po1y(ethylene glycol) (PEG) segment was intercalated between the lamellae of Na-MMT and swelled with water to enhance the diffusion of MMA into the gallery. The structure of the nanocomposite was examined using X-ray diffraction and transmission electron microscopy, and the thermal properties were examined using differential scanning calorimetry and thermogravimetry. The PMMA/Na-MMT nanocomposite prepared by intergallery polymerization showed a distinct enhancement of its thermal properties; an approximately $30^{\circ}C$ increase in its glass transition temperature and an $80\sim100^{\circ}C$ increase in its thermal decomposition temperature for a $10\%$ weight loss.

비닐아세테이트 중합공정에서 폭주반응 위험성 평가 (Hazard Evaluation of Runaway Reaction in the Vinyl Acetate Polymerization Process)

  • 이근원;한인수
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.46-53
    • /
    • 2011
  • The risk assessment of thermal behavior and runaway reaction cased by an exothermic batch process in manufacture of the vinyl acetate resin are described in the present paper. The aim of the study was to evaluate the risk of runaway reaction with operating parameters such as a reaction inhibitor, reaction temperature and a mount of methanol charged in the vinyl acetate polymerization process. The experiments were performed by a sort of calorimetry with the Multimax reactor system as a screening tool to investigate runaway reaction. From the experimental results, it was found that we could occur the auto acceleration for reaction of raw materials with operating parameters over $65^{\circ}C$ of reaction temperature in the vinyl acetate polymerization process.

다공성 실리카 에어로겔을 이용한 복합단열재의 특성에 관한 연구 (A Study on Properties of Thermal Insulation Board Prepared by Porous Silica Aerogel)

  • 윤종국;구경완
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1362-1367
    • /
    • 2012
  • High porous silica aerogel/polyurethane polymer composite was manufactured by cross-linking polymerization of polyurethane foaming process. The properties of microstructure, mechanical strength, and thermal properties were investigated for its various applications. The superhydrophobic silica aerogel powders were used for highly thermal insulation filler materials. The thermal conductivities can be resulted 0.07 W/mK to 0.13 W/mK, by decreasing the contents of silica aerogels in composite materials. It is found that the polymerization formulation by organic binders can be applied to heavy industires, building materials, and various industries.