• Title/Summary/Keyword: thermal polymerization

Search Result 473, Processing Time 0.026 seconds

Studies on Synthesis of Block Copolymers Containing Polyester and Polypeptide for Drug Delivery System Ⅰ. Synthesis and Characterization of Copolymer of L-Lactic Acid and L-Glutamic Acid (폴리펩티드-의약 전달체 및 폴리펩티드 공중합체의 합성 및 물성에 관한 연구 (Ⅰ) L-Lactic Acid 와 L-Glutamic Acid 공중합체의 합성 및 그의 물성)

  • Kim, Hong Beom;Seong, Yong Gil;Jeong, Jae Hui;Baek, Hyeong Ge;Min, Tae Jin;Kim, Yeong Sun
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.203-210
    • /
    • 1990
  • As a possible biocompatible and biodegrable polymer skeleton for drug delivery system, block copolymers of L-lactic acid and L-glutamic acid with different composition were synthesized and characterized. Poly (L-lactide) was prepared by polymerization of L-lactide with zine oxide at $130^{\circ}C$ for 72 hrs. 3-Amino-l-propanol was introduced to poly (L-lactide) by an ester linkage in order to initiate polymerization. Polymerization of $\gamma-benzyl-L-glutamate-N-carboxyanhydride(\gamma-BLG-NCA)$ utiliizing the amino group of modified poly (L-lactide) as an initiator gave rise to the block copoly $(L-lactide-\gamma-benzyl-L-glutamate).$ The NMR study of resulting block copolymers showed that the composition of L-lactic acid and $\gamma-benzyl-L-glutamate$ in block copolymers was depended on the weight ratio of poly (L-lactide) and $\gamma-BLG-NCA.$ The thermal properties of the resulting block copolymers were determined by the differential scanning calorimetry and by the thermogravimetry.

  • PDF

Ring-Opening Metathesis Polymerization and Hydrogenation of Ethyl-substituted Tetracyclododecene

  • Kwon, Oh-Joon;Vo, Huyen Thanh;Lee, Sul-Bee;Kim, Tae-Kyung;Kim, Hoon-Sik;Lee, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2737-2742
    • /
    • 2011
  • Ring-opening metathesis polymerization (ROMP) of an ethyl-substituted tetracyclododecene (8-ethyltetracyclo[$4.4.0.1^{2,5}.1^{7,10}$] dodec-3-ene, Et-TCD) was carried out in the presence of a ternary catalyst system consisting of $WCl_6$, triisobutyl aluminium (iso$Bu_3Al$), and ethanol. The optimal molar ratio of Et-TCD/$WCl_3$/iso-$Bu_3Al$/ethanol was found as 500/1/3/2 at which the yield of ring-opened polymer was 100%. 1-Hexene was shown to be an effective molecular weight controlling agent for ROMP reaction of Et-TCD. The hydrogenation of the ring opened polymer (p-Et-TCD) was conducted successfully using Pd(5 wt %)/${\gamma}$-$Al_2O_3$ at $80^{\circ}C$ for 1 h. Chemical structures of p-Et-TCD and its hydrogenated product($H_2$-p-Et-TCD) were characterized using 2D NMR techniques ($^1H-^1H$ COSY and $^1H-^{13}C$ HSQC). The changes of physical properties such as thermal stability, glass transition temperature and light transmittance after the hydrogenation were also investigated using TGA, DSC, and UV.

Effects of pressure during the synthesis of petroleum pitch precursors in open and closed systems

  • Choi, Jong-Eun;Ko, Seunghyun;Kim, Jong Gu;Jeon, Young-Pyo
    • Carbon letters
    • /
    • v.25
    • /
    • pp.95-102
    • /
    • 2018
  • We examined the pressure effects on petroleum pitch synthesis by using open and closed reaction systems. The pressure effects that occur during the pitch synthesis were investigated in three pressure systems: a closed system of high pressure and two open systems under either an atmosphere or vacuum. A thermal reaction in the closed system led to the high product yield of a pitch by suppressing the release of light components in pyrolysis fuel oil. Atmospheric treatment mainly enhanced the polymerization degree of the pitch via condensation and a polymerization reaction. Vacuum treatment results in a softening point increase due to the removal of components with low molecular weights. To utilize such characteristic effects of system pressure during pitch preparations, we proposed a method for synthesizing cost-competitive pitch precursors for carbon materials. The first step is to increase product yield by using a closed system; the second step is to increase the degree of polymerization toward the desired molecular distribution, followed by the use of vacuum treatment to adjust softening points. Thus, we obtained an experimental quinoline insolubles-free pitch of product yield over 45% with softening points of approximately $130^{\circ}C$. The proposed method shows the possibility to prepare cost-competitive pitch precursors for carbon materials by enhancing product yield and other properties.

Effects of Comonomer and Various Polymerization Conditions on Terpolymerization (삼원공중합에 있어서 공단량체 및 여러 가지 중합조건이 미치는 영향)

  • Kim, Jung Soo;Jeon, Dong-Gyu;Kim, Tae-Wan;Kim, Hyun Ki;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.263-268
    • /
    • 2013
  • In this study, we prepared poly(ethylene-ter-1-hexene-ter-divinylbenzene) using bridged rac-$Et[Ind]_2ZrCl_2$ metallocene catalysts. The effect of 1-hexene on the terpolymerization rate was evaluated. When cocatalyst/catalyst molar ratio was 3,000, catalytic activity indicated more than 8,000 which was very remarkable value. As polymerization time increased, the weight-average molecular weight of the terpolymer gradually increased to some degree. In case of a polymerization time of 50 minutes, the terpolymer became amorphous state. The molecular weight distribution and densities of the terpolymer were 110,000-200,000 and $0.85-0.89g/cm^3$, respectively. Thermal properties and structure of the terpolymer were also identified.

Improving Power Conversion Efficiency and Long-term Stability Using a Multifunctional Network Polymer Membrane Electrolyte; A Novel Quasi-solid State Dye-sensitized Solar Cell

  • Gang, Gyeong-Ho;Gwon, Yeong-Su;Song, In-Yeong;Park, Seong-Hae;Park, Tae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.484.2-484.2
    • /
    • 2014
  • There are many efforts to improving the power conversion efficiencies (PCEs) of dye-sensitized solar cells (DSCs). Although DSCs have a low production cost, their low PCE and low thermal stability have limited commercial applications. This study describes the preparation of a novel multifunctional polymer gel electrolyte in which a cross-linking polymerization reaction is used to encapsulate $TiO_2$ nanoparticles toward improving the power conversion efficiency and long-term stability of a quasi-solid state DSC. A series of liquid junction dye-sensitized solar cells (DSCs) was fabricated based on polymer membrane encapsulated dye-sensitized $TiO_2$ nanoparticles, prepared using a surface-induced cross-linking polymerization reaction, to investigate the dependence of the solar cell performance on the encapsulating membrane layer thickness. The ion conductivity decreased as the membrane thickness increased; however, the long term-stability of the devices improved with increasing membrane thickness. Nanoparticles encapsulated in a thick membrane (ca. 37 nm), obtained using a 90 min polymerization time, exhibited excellent pore filling among $TiO_2$ particles. This nanoparticle layer was used to fabricate a thin-layered, quasi-solid state DSC. The thick membrane prevented short-circuit paths from forming between the counter and the $TiO_2$ electrode, thereby reducing the minimum necessary electrode separation distance. The quasi-solid state DSC yielded a high power conversion efficiency (7.6/8.1%) and excellent stability during heating at $65^{\circ}C$ over 30 days. These performance characteristics were superior to those obtained from a conventional DSC (7.5/3.5%) prepared using a $TiO_2$ active layer with the same thickness. The reduced electrode separation distance shortened the charge transport pathways, which compensated for the reduced ion conductivity in the polymer gel electrolyte. Excellent pore filling on the $TiO_2$ particles minimized the exposure of the dye to the liquid and reduced dye detachment.

  • PDF

Synthesis and Characterization of Allyl Ester Resin-Layered Silicate Nanocomposite (알릴 에스터 수지-층상 실리케이트 나노복합재료의 합성과 특성)

  • 팽세웅;김장엽;허완수;조길원;이상원
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.177-184
    • /
    • 2004
  • Polymer-clay nanocomposite containing the low amounts of clay shows improved physical, mechanical properties. In this study, allyl ester prepolymer was synthesised by reactions of the diallyl terephthalate monomers and the 1,3-butanediol monomers. Nanocomposites of allyl ester prepolymer and the two kinds of the organically layered silicate were prepared by using the intercalation method as well as the in-situ polymerization method using. By varying the amount of clay content, curing conditions, and feeding conditions. the nanocomposite was studied using X-ray diffraction. From XRD results, allyl ester-Cloisite 30 B nanocomposite made by the in-situ polymerization method shows better exfoliation behavior compared with the intercalation method. It can be said that the transesterification reaction between functional groups (-OH) of intercalant and monomers results in the increased gallery distance. Also mechanical and thermal properties indicate that the dispersity of clay is an important factor for improving physical properties of the nanocomposite.

Polymers and Inorganics: A Happy Marriage?

  • Wegner Gerhard;Demir Mustafa M.;Faatz Michael;Gorna Katazyrna;Munoz-Espi Rafael;Guillemet Baptiste;Grohn Franziska
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.95-99
    • /
    • 2007
  • The most recent developments in two areas: (a) synthesis of inorganic particles with control over size and shape by polymer additives, and (b) synthesis of inorganic-polymer hybrid materials by bulk polymerization of blends of monomers with nanosized crystals are reviewed. The precipitations of inorganics, such as zinc oxide or calcium carbonate, in presence and under the control of bishydrophilic block or comb copolymers, are relevant to the field of Biomineralization. The application of surface modified latex particles, used as controlling agents, and the formation of hybrid crystals in which the latex is embedded in otherwise perfect crystals, are discussed. The formation of nano sized spheres of amorphous calcium carbonate, stabilized by surfactant-like polymers, is also discussed. Another method for the preparation of nanosized inorganic functional particles is the controlled pyrolysis of metal salt complexes of poly(acrylic acid), as demonstrated by the syntheses of lithium cobalt oxide and zinc/magnesium oxide. Bulk polymerization of methyl methacrylate blends, with for example, nanosized zinc oxide, revealed that the mechanisms of tree radical polymerization respond to the presence of these particles. The termination by radical-radical interaction and the gel effect are suppressed in favor of degenerative transfer, resulting in a polymer with enhanced thermal stability. The optical properties of the resulting polymer-particle blends are addressed based on the basic discussion of the miscibility of polymers and nanosized particles.

Preparation of the Conducting Polyaniline-HIPS Blends for Injection Molding by Toluene Solution Casting (Toluene 용액 캐스팅에 의한 차출용 전도성 Polyaniline-HIPS 블렌드 제조)

  • Lee, Jong-Hyeok;Kim, Eun-Ok
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.203-206
    • /
    • 2009
  • Polyaniline Emeraldine salt (PANI-salt) prepared by the common chemical oxidative polymerization caused the corrosion of the metallic injection mold by protonic acid such as HCl which used as a dopant. PANI-salt, polyaniline doped with dodecylbenzenesulfonic acid (DBSA), was obtained by the emulsion polymerization in nonpolar organic solvent, toluene. In this study DBSA was used as a dopant along with a surfactant. PANI-salt and high impact polystyrene (HIPS) have a good solubility in toluene. Blends with different ratio of PANI and HIPS were prepared through a solution-cast blending. The structure of PANI-salt was characterized by FT-IR and UV-Vis. The morphology, thermal, and electrical properties for PANI-HIPS blends were investigated. Injection molded under $103^{\circ}C$, 120 psi, PANI-HIPS showed the highest electrical conductivity ($6.02{\times}10^{-5}\;S/cm$) after blending PANI (50 mL) and HIPS (1 g).

Synthesis of Conductive Polymer Nano-wires by Porous Membrane Template (다공막 주형에 의한 전도성 고분자 나노와이어의 합성)

  • Shin, Hwa-Sup;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.35-45
    • /
    • 2012
  • We prepared the highly ordered nano-wires of polypyrrole, polyaniline conductive polymers and polypyrrole/ polyaniline conductive copolymers by templating the anodic aluminum oxide (AAO) porous membrane, in which pore diameter was 20 nm, 100 nm and 200 nm. Those conductive polymers were grown from pore inner surface of AAO membrane forming hollow tubes and then wire structures were formed after 3 hour polymerization. By removing AAO membrane templates using sodium hydroxide solution, the conductive polymer nano-wires were successfully obtained, of which diameter and length were close to the ones of nano-pores in AAO membrane template. Crystallinity and thermal stability of the conductive polymer nano-wires were higher than irregular ones that prepared by solution polymerization. Furthermore, the electrical resistance of conductive polymer nano-wires were reduced by about 4~60% compared with that of the irregular polymers prepared by solution polymerization.

Processing and Characterization of Polyamide 610/Carbon Fiber/Carbon Nanotube Composites through In-Situ Interfacial Polymerization (계면중합법을 이용한 폴리아마이드 610/탄소섬유/탄소나노튜브 복합재 제조 및 물성 평가)

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.415-420
    • /
    • 2020
  • The interfacial properties in carbon fiber composites, which control the overall mechanical properties of the composites, are very important. Effective interface enhancement work is conducted on the modification of the carbon fiber surface with carbon nanotubes (CNTs). Nonetheless, most surface modifications methods do have their own drawbacks such as high temperatures with a range of 600~1000℃, which should be implemented for CNT growth on carbon fibers that can cause carbon fiber damages affecting deterioration of composites properties. This study includes the use of in-situ interfacial polymerization of polyamide 610/CNT to fabricate the carbon fiber composites. The process is very fast and continuous and can disperse CNTs with random orientation in the interface resulting in enhanced interfacial properties. Scanning electron microscopy was conducted to investigate the CNT dispersion and composites morphology, and the thermal stability of the composites was analyzed via thermogravimetric analysis. In addition, fiber pull-out tests were used to assess interfacial strength between fiber and matrix.