DOI QR코드

DOI QR Code

Effects of Comonomer and Various Polymerization Conditions on Terpolymerization

삼원공중합에 있어서 공단량체 및 여러 가지 중합조건이 미치는 영향

  • Kim, Jung Soo (Convergent Technology R&D Division, Korea Institute of Industrial Technology) ;
  • Jeon, Dong-Gyu (Convergent Technology R&D Division, Korea Institute of Industrial Technology) ;
  • Kim, Tae-Wan (Ukseoung chemical) ;
  • Kim, Hyun Ki (Nexene Tire) ;
  • Kim, Dong Hyun (Convergent Technology R&D Division, Korea Institute of Industrial Technology)
  • 김정수 (한국생산기술연구원 융복합연구부문) ;
  • 전동규 (한국생산기술연구원 융복합연구부문) ;
  • 김태완 (욱성화학) ;
  • 김현기 (넥센타이어) ;
  • 김동현 (한국생산기술연구원 융복합연구부문)
  • Received : 2013.09.09
  • Accepted : 2013.10.10
  • Published : 2013.12.31

Abstract

In this study, we prepared poly(ethylene-ter-1-hexene-ter-divinylbenzene) using bridged rac-$Et[Ind]_2ZrCl_2$ metallocene catalysts. The effect of 1-hexene on the terpolymerization rate was evaluated. When cocatalyst/catalyst molar ratio was 3,000, catalytic activity indicated more than 8,000 which was very remarkable value. As polymerization time increased, the weight-average molecular weight of the terpolymer gradually increased to some degree. In case of a polymerization time of 50 minutes, the terpolymer became amorphous state. The molecular weight distribution and densities of the terpolymer were 110,000-200,000 and $0.85-0.89g/cm^3$, respectively. Thermal properties and structure of the terpolymer were also identified.

본 연구에서는 다리 구조의 메탈로센 촉매인 rac-$Et[Ind]_2ZrCl_2$를 이용하여 새로운 구조의 poly(ethylene-ter-1-hexene-ter-divinylbenzene) 삼원공중합체를 제조하였다. 공단량체인 1-hexene이 중합에 미치는 효과에 관한 연구를 수행하였다. 여러 가지 중합 조건의 영향을 살펴보았는데 공촉매/촉매 몰비가 3,000일 때, 촉매활성도는 8,000이 넘는 매우 높은 수준의 활성도를 보여주었다. 또한, 중합 시간에 따라 중량 평균 분자량이 일정 수준까지 증가하는 경향을 나타내었고, 중합시간이 50분일 때는 무정형 상태에 가까워지는 것을 확인하였다. 삼원공중합체의 중량 평균 분자량은 110,000-200,000, 밀도는 $0.85-0.89g/cm^3$ 수준이었다. 또한, 삼원 공중합체의 열적 성질과 구조를 확인하였다.

Keywords

References

  1. R. B. Stuart, M. N, Suzanne, R. T. David, "Coordination Polymers", RSC publishing, Cambridge CB4 0WF, UK (2009).
  2. G. Natta, P. Pino, G. Mazzanti, and U. Giannini, "A crystallizable organometallic complex containing titanium and aluminum", J. Am. Chem. Soc., 79, 2975 (1957).
  3. D. S. Breslow and N. R. Newburg, "Bis-(Cyclopentadienyl)-titanium Dichloride-Alkylaluminum Complexes as Soluble Catalysts for the Polymerization of Ethylene", J. Am, Chem. Soc., 79, 5072 (1959).
  4. H. Sinn, W, Kaminsky, "Living Polymers on Polymerization with Extremely Productive Ziegler Catalysts", Adu. Orgenomet Chem., 18, 99 (1980).
  5. K. Weiss, U. Neugebuer, S. Blau, and H. J. Lang, "Untersuchungen von Polymerisations und Metathesereaktionen, Einfach un zweifach dimethylsilylen-verbruckte Metallocendichloride des Ti, Zr und Hf in der Ethen- und Propen-Polymerisation", J. Organomet. Chem., 520, 171 (1996). https://doi.org/10.1016/S0022-328X(96)90253-3
  6. S. K. Noh, J. H. Jung, D. H. Lee, S. K. Park, and H. J. Kim, "Copolymerization of Ethylene and Cycloolefin with Metallocene Catalyst: I. Effect of Catalyst", J. Organomet, Chem., 592, 147 (2000).
  7. S. J. Park, W. J. Wang, S. Zhu, "Continuous solution copolymerizarion of ethylene with propylene using a constrained geometry catalyst system", Macromol. Chem. Phys., 201, 2203 (2000). https://doi.org/10.1002/1521-3935(20001101)201:16<2203::AID-MACP2203>3.0.CO;2-V
  8. W. J. Wang, E. Kolodka, S. Zhu, Archie E. Hamilelec, "Continuous solution copolymerization of ethylene and octene with constrained geometry metallocene catalyst", J. Polym. Sci.: Polym. Chem., 37, 2949 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2949::AID-POLA28>3.0.CO;2-W
  9. N. Naga, Y. Imanishi, "Copolymerization of Ethylene and 1,7-Octadiene, 1, 9-Decadiene with Zirconocene Catalysts", Macromol. Chem. Phys., 203, 2155 (2002). https://doi.org/10.1002/1521-3935(200211)203:15<2155::AID-MACP2155>3.0.CO;2-7
  10. Il. Kim, "Copolymerization of ethylene and 5-vinyl-2- norbornene by stereospecific metallocenes and epoxidation of the resulting copolymer", React. Funct. Polym., 49, 197 (2001). https://doi.org/10.1016/S1381-5148(01)00074-8
  11. K. Nomura, H. Fukuda, S. Katao, M. Fujiki, H. J. Kim, D. H. Kim, and I. Saeed, "Olefin Polymerization by Half-Titanocenes Containing η2-Pyrazolato Ligands-MAO Catalyst Systems", Macromolecules, 44, 1986 (2011). https://doi.org/10.1021/ma200018z
  12. S. Machida, H. Shikuma, T. Tazaki, T. Tatsumi, and S. Kurokawa, U.S. Patent 5,608,009 (1997).
  13. F. Bai, X. Yang and W. Huang, "Synthesis of Narrow or Monodisperse Poly(divinylbenzene) Microsheres by Distillation-Precipitation Polymerization", Macromolecules, 37, 9746 (2004). https://doi.org/10.1021/ma048566l
  14. M. A. Da Silva, G. B. Galland, "Synthesis and Characterization of Ethylene-Propylene-1-Pentene Terpolymers", J. Polym. Sci.: Polym. Chem., 46, 947-957 (2008). https://doi.org/10.1002/pola.22438
  15. G. R. Kim, J. W. Han, B. G. Cho, H. J. Kang, "Crystallization Characteristics of Metallocene Low Density Polyethylene", Polymer (Korea), 25, 833 (2001).
  16. Jinzhu Tan, Y.J. Chao, Haifeng Wang, Jianming Gong, and J.W. Van Zee, "Chemical and mechanical stability of EPDM in a PEM fuel cell environment", Polym. Degrad. Stab., 94, 2072 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.07.009
  17. W. S. Kim, W. D. Kim, C. S Woo and S.-S. Choi, "Effect of NR/BR Blends ratio and Oil Content on the Mechanical Properties of Rubber Isolator at Low Temperature", Elastomer, 39, 95 (2004).