• Title/Summary/Keyword: thermal modeling

Search Result 974, Processing Time 0.028 seconds

Impact of Phonon Dispersion on Thermal Conductivity Model (포논 분산이 열전달 모델에 미치는 영향)

  • Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1165-1173
    • /
    • 2003
  • The effects of (1) phonon dispersion on thermal conductivity model and (2) differentiation of group velocity and phase velocity are examined for germanium. The results show drastic change of thermal conductivity regardless of the same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon on the thermal conductivity at high temperatures is reassessed by considering more rigorous dispersion model. Holland model, which is commonly used for modeling thermal conductivity, underestimates the scattering rate for TA phonon at high frequency. This leads the conclusion that TA is dominant heat transfer mode at high temperatures. But according to the rigorous consideration of phonon dispersion, the reduction of thermal conductivity is much larger than the estimation of Holland model, thus the TA at high frequency is expected to be no more dominant heat transfer mode. Another heat transfer mechanism may exist at high temperatures. Two possible explanations we the roles of (1) Umklapp scattering of LA phonon at high frequency and (2) optical phonon.

Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System (Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션)

  • KUMAR, ANIL;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.331-338
    • /
    • 2015
  • Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.

Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy

  • Lee, Jin-Hyeon;Lee, Jae-Ha;Yang, Seong-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1482-1489
    • /
    • 2001
  • Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing proce sses using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of the possible input variables is determined because the error model parameters are only calculated mathematically-based on the number of temperature variables.

  • PDF

Algorithm of Thermal Error Compensation for the Line Center - System Interface - (CNC공작기계의 열변형 오차보정 (II) - 알고리즘 및 시스템 인터폐이스 중심 -)

  • 이재종;최대봉;박현구;류길상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.417-422
    • /
    • 2002
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been implemented on the machining center in order to compensate thermal error of machine tools under the real-time. The thermal errors are predicted using the neural network and multi-regression modeling methods. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

Medium Voltage HTS Cable Thermal Simulation using PSCAD/EMTDC

  • Jung, Chaekyun;Kang, Yeonwoog;Kang, Jiwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.145-150
    • /
    • 2015
  • This paper described the medium voltage high temperature superconducting cable thermal simulation and its application. New simulation method for HTS cable modeling using PSCAD/EMTDC is introduced in this paper. The developed simulation method consists of electrical model part and thermal model part. In electrical model part, power loss and thermal capacitance can be calculated in each layer, then the temperature of each layer can be calculated by power loss and thermal capacitance in thermal model part. This paper also analyzes the electrical and thermal characteristic in the case of normal operating condition and transient including single line to ground fault and line to line ground fault using new simulation method.

Thermal Modeling of Quasi-Adiabatic Room and Lighting Fixture for Estimation of Internal Heat Gain by Luminaires (조명기구를 통한 내부획득열 추정을 위한 고단열실 및 조명기구의 열적 모델링)

  • Park, He-Rie;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.1-12
    • /
    • 2012
  • In order to reduce energy consumption and greenhouse gas emission in building domain, thermal insulation of building is being enhanced. In a well insulated and tightened environment, internal heat gain caused by solar radiation, luminaires, electronic appliances and metabolism can be more important to thermal condition of building. This paper presents mathematical/physical models of quasi-adiabtic room and lighting fixtures using heat balance equation and thermal-electric analogy to quantify and modelize the heat gain due to luminaires. Experimental results are used to identify thermal parameters of theoretical models. And simulation results of models using Matlab/Simulink are conducted to verify the models and to investigate the thermal effect of lighting fixtures into quasi-adiabatic room.

The thermal conductivity analysis of the SOI LIGBT structure using $Al_2O_3$ ($Si/Al_2O_3/Si$ 형태의 SOI(SOS) LIGBT 구조에서의 열전도 특성 분석)

  • Kim, Je-Yoon;Kim, Jae-Wook;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.163-166
    • /
    • 2003
  • The electrothermal simulation of high voltage LIGBT(Lateral Insulated Gate Bipolar Transistor) in thin Silicon on insulator (SOI) and Silicon on sapphire (SOS) for thermal conductivity and sink is performed by means of MEDICI. The finite element simulations demonstrate that the thermal conductivity of the buried oxide is an important parameter for the modeling of the thermal behavior of silicon-on-insulator (SOI) devices. In this paper, using for SOI LIGBT, we simulated electrothermal for device that insulator layer with $SiO_2\;and\;Al_2O_3$ at before and after latch up to measured the thermal conductivity and temperature distribution of whole device and verified that SOI LIGBT with $Al_2O_3$ insulator had good thermal conductivity and reliability

  • PDF

Thermal Characteristics and Heatsink Modeling. for IGBT (IGBT의 열 특성 및 히트싱크 모델링)

  • Ryu, Se-Hwan;Bea, Kyung-Kuk;Shin, Ho-Chul;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.172-173
    • /
    • 2007
  • As the power density and switching frequency increase, thermal analysis of power electronics system becomes imperative. The thermal analysis provides valuable information on the semiconductor rating, long-term reliability. In this paper, thermal distribution of the Non Punchthrough(NPT) Insulated Gate Bipolar Transistor has been studied. For analysis of thermal distribution, we obtained experimental and simulation results by using finite element simulator, Ansys and by using photographic infrared thermometer, we compared experimental date with simulation result. and got good agreement. Also this paper provided thermal distribution of IGBT connected to heat sinks. and this results will be good information to design optimal heat sink for IGBT.

  • PDF

A Study of Thermal Power Plant Feedwater System with Modeling and L.Q.Controller (화력발전소 보일러 급수제어 계통의 모델링과 L.Q. 제어기 적용에 관한 연구)

  • 서진헌;황재호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1281-1287
    • /
    • 1990
  • A new thermal power plant feed-water system model, which is based on Astrom, is presented. Astrom's model has some difficulties in applying to practical systems because it is not able to measure the heat and energy transfer loss. Hence, in order to make up for these difficulties, the Gas State Equation is added to the model. Computer simulations are performed to show the validity of the new model at thermal power plant with practical boiler operating data and to verify the L.Q. controller effect on boiler drum level system.

Finite-element modeling and analysis of time-dependent thermomechanical distortion of optical sheets in a LCD module

  • Lee, Jae-Won;Hwang, Hak-Mo;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1436-1441
    • /
    • 2006
  • Each type of optical sheets in a LCD module experiences a characteristic behavior for thermal loading and unloading. During thermal cycling, a polymeric behavior is reversible and recyclable, depending on a material stiffness critically affected by temperature and time. Some critical issues on temperature- and time-dependent themomechanical deformation of the polymeric sheet are addressed by finite-element thermal results, followed by structural simulation results in this study.

  • PDF