• Title/Summary/Keyword: thermal line rating

Search Result 18, Processing Time 0.024 seconds

Dynamic Thermal Rating of Overhead Transmission Lines Based on GRAPES Numerical Weather Forecast

  • Yan, Hongbo;Wang, Yanling;Zhou, Xiaofeng;Liang, Likai;Yin, Zhijun;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.724-736
    • /
    • 2019
  • Dynamic thermal rating technology can effectively improve the thermal load capacity of transmission lines. However, its availability is limited by the quantity and high cost of the hardware facilities. This paper proposes a new dynamic thermal rating technology based on global/regional assimilation and prediction system (GRAPES) and geographic information system (GIS). The paper will also explore the method of obtaining any point meteorological data along the transmission line by using GRAPES and GIS, and provide the strategy of extracting and decoding meteorological data. In this paper, the accuracy of numerical weather prediction was verified from the perspective of time and space. Also, the 750-kV transmission line in Shaanxi Province is considered as an example to analyze. The results of the study indicate that dynamic thermal rating based on GRAPES and GIS can fully excavate the line power potential without additional cost on hardware, which saves a lot of investment.

Prediction of Dynamic Line Rating Based on Thermal Risk Probability by Time Series Weather Models (시계열 기상모델을 이용한 열적 위험확률 기반 동적 송전용량의 예측)

  • Kim, Dong-Min;Bae, In-Su;Cho, Jong-Man;Chang, Kyung;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.273-280
    • /
    • 2006
  • This paper suggests the method that forecasts Dynamic Line Rating (DLR). Thermal Overload Risk Probability (TORP) of the next time is forecasted based on the present weather conditions and DLR value by Monte Carlo Simulation (MCS). To model weather elements of transmission line for MCS process, this paper will propose the use of statistical weather models that time series is applied. Also, through the case study, it is confirmed that the forecasted TORP can be utilized as a criterion that decides DLR of next time. In short, proposed method may be used usefully to keep security and reliability of transmission line by forecasting transmission capacity of the next time.

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.

Evaluation for Lifetime and Thermal Ratings for Aged Overhead Transmission Lines (노후 가공송전선의 수명과 열용량의 평가)

  • Kim, Sung-Duck
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Thermal rating or lifetime evaluation for aged overhead transmission line becomes more important concerns with respect to keeping power delivery stable having proper capability. Both load rating and dip/clearance are essential factors to determine transmission capacity. In order to evaluate thermal rating and conductor lifetime for domestic transmission lines with double-circuit, the dip/ground clearance standards as well as the electrical equipment technical standard are examined. Conductor temperature and dip are calculated under the assumption of a contingency, and then, a method to up-rate load capacity is searched. As thermal rating and limit dip for aged conductor are properly evaluated, an improved strategy in order to guarantee the existing power system reliability is presented in this paper.

Analysis on Ampacity of Overhead Transmission Lines Being Operated

  • Yan, Zhijie;Wang, Yanling;Liang, Likai
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1358-1371
    • /
    • 2017
  • Dynamic thermal rating (DTR) system is an effective method to improve the capacity of existing overhead line. According to the methodology based on CIGRE (International Council on Large Electric systems) standard, ampacity values under steady-state heating balance can be calculated from ambient environmental conditions. In this study, simulation analysis of relations between parameters and ampacity is described as functional dependence, which can provide an effective basis for the design and research of overhead transmission lines. The simulation of ampacity variation in different rating scales is described in this paper, which are determined from real-time meteorological data and conductor state parameters. To test the performance of DTR in different rating scales, capacity improvement and risk level are presented. And the experimental results show that the capacity of transmission line by using DTR has significant improvement, with low probability of risk. The information of this study has an important reference value to the operation management of power grid.

Study on Thermal Load Capacity of Transmission Line Based on IEEE Standard

  • Song, Fan;Wang, Yanling;Zhao, Lei;Qin, Kun;Liang, Likai;Yin, Zhijun;Tao, Weihua
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.464-477
    • /
    • 2019
  • With the sustained and rapid development of new energy sources, the demand for electric energy is increasing day by day. However, China's energy distribution is not balanced, and the construction of transmission lines is in a serious lag behind the improvement of generating capacity. So there is an urgent need to increase the utilization of transmission capacity. The transmission capacity is mainly limited by the maximum allowable operating temperature of conductor. At present, the evaluation of transmission capacity mostly adopts the static thermal rating (STR) method under severe environment. Dynamic thermal rating (DTR) technique can improve the utilization of transmission capacity to a certain extent. In this paper, the meteorological parameters affecting the conductor temperature are analyzed with the IEEE standard thermal equivalent equation of overhead transmission lines, and the real load capacity of 220 kV transmission line is calculated with 7-year actual meteorological data in Weihai. Finally, the thermal load capacity of DTR relative to STR under given confidence is analyzed. By identifying the key parameters that affect the thermal rating and analyzing the relevant environmental parameters that affect the conductor temperature, this paper provides a theoretical basis for the wind power grid integration and grid intelligence. The results show that the thermal load potential of transmission lines can be effectively excavated by DTR, which provides a theoretical basis for improving the absorptive capacity of power grid.

Study on the Estimation of Seasonal Ambient Current for the Application of Ambient Adjusted Line Rating(AAR) in Overhead Transmission Lines Using Risk Tolerance(RT) Method (가공송전선로의 AAR 적용 시 Risk Tolerance 분석을 이용한 계절별 최대 허용전류 산정 및 적용에 관한 연구)

  • Lee, Jaegul;Bae, Youngjae;Song, Jiyoung;Shin, Jeonghoon;Kim, Yonghak;Kim, Taekyun;Yoon, Yongbeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.7-15
    • /
    • 2017
  • Ambient Adjusted line Rating(AAR) method for overhead transmission lines considering Risk Tolerance(RT) was proposed in this paper. AAR is suitable for system operators to plan their operation strategy and maintenance schedule because this can be designed as a seasonal line rating. Several candidate transmission lines are chosen to apply the proposed method in the paper. As a result, it is shown that system reliability was significantly enhanced through maximizing transfer capability, solving the system constraints.

A Study on Utilization Ratio and Operation of Transmission Lines (송전선로의 이용률 평가 및 합리적 운영에 관한 연구)

  • Kim, Dong-Min;Bae, In-Su;Cho, Jong-Man;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.10
    • /
    • pp.426-432
    • /
    • 2006
  • This paper describes the concepts of Static Line Rating (SLR) and Dynamic Line Rating (DLR) and the computational methods to demonstrate them. Calculation of the line capacity needs the heat balance equation which is also used for computing the reduced tension in terms of line aging. SLR is calculated with the data from the worst condition of weather throughout the year. Even now, the utilization ratio is obtained from this SLR data in Korea. DLR is the improved method compared to SLR. A process for DLR reveals not only improved line ratings but also more accurate allowed line ratings based on line aging and real time conditions of weather. In order to reflect overhead transmission line aging in DLR, this paper proposes the method that considers the amount of decreased tension since the lines have been installed. Therefore, the continuous allowed temperature for remaining life time is newly acquired. In order to forecast DLR, this paper uses weather forecast models, and applies the concept of Thermal Overload Risk Probability (TORP). Then, the new concept of Dynamic Utilization Ratio (DUR) is defined, replacing Static Utilization Ratio (SUR). For the case study, the two main transmission lines which are responsible for the north bound power flow in the Seoul metropolitan area are chosen for computing line rating and utilization ratio. And then line rating and utilization ratio are analyzed for each transmission line, so that comparison of the present and estimated utilization ratios becomes available. Finally, this paper proves the validity of predictive DUR as the objective index, with simulations of emergency state caused by system outages, overload and so on.

Assessment of Available Transfer Capability (ATC) considering Real-time Weather Conditions (실시간 기상상태를 고려한 가용송전용량 산정)

  • Kim, Dong-Min;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.485-491
    • /
    • 2010
  • Total Transfer Capability (TTC) should be pre-determined in order to estimate Available Transfer Capability (ATC). Typically, TTC is determined by considering three categories; voltage, stability and thermal limits. Among these, thermal limits are treated mainly in this paper on the evaluation of TTC due to the relatively short transmission line length of Korea Electric Power Corporation (KEPCO) system. This paper presents a new approach to evaluate the TTC using the Dynamic Line Rating (DLR) for the thermal limit. Since the approach includes not only traditional electrical constraints but also real-time environmental constraints, this paper obtains more cost-effective and exact results. A case study using KEPCO system confirms that the proposed method is useful for real-time operation and the planning of the electricity market.

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.