• Title/Summary/Keyword: thermal hysteresis

Search Result 192, Processing Time 0.027 seconds

A Study on the Electrical Characteristics of Optical Memory PLZT Thin Films (Sol-Gel법으로 제작된 광메모리영역 PLZT박막의 전기적 특성)

  • 최형욱;장낙원;백동수;박정흠;박창엽
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 1998
  • In this study, PLZT stock solutions were prepared by Sol-Gel processing after the compositions were selected in the memory region of PLZT bulk phase diagram. PLZT solutions were deposited on the ITO glass substrate by spin-coating method. The thin films were annealed by rapid thermal processing. The electric characteristics, hysteresis loop, C-V characteristics of thin films in the memory region were measured in order to investigate the electrical characteristics of PLZT thin films. In selected compositions the decrease in Zr/Ti ratio led to an increase in dielectric constant and the decrease in remanent polarization and coercieve field which brought about slim hysteresis loop.

  • PDF

Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator (폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어)

  • Sohn, Ki-Won;Yi, Byung-Ju;Kim, Sean-Jeong;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.

Numerical Simulations on Nonlinear Behaviors of Diffusional-Thermal Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 확산-전도 불안정의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.695-702
    • /
    • 2002
  • Nonlinear dynamics of striped diffusion flames, by the diffusional-thermal instability with Lewis numbers sufficiently less than unity, is numerically investigated by examining various two-dimensional flame-structure solutions. The Lewis numbers for fuel and oxidizer are assumed to be identical and an overall single-step Arrhenius-type chemical reaction rate is employed in the model. Particular attention is focused on identifying the flame-stripe solution branches corresponding to each distinct stripe pattern and hysteresis encountered during the transition. At a Damkohler number slightly greater than the extinction Damkohler number, eight-stripe solution first emerges from one dimensional solution. The eight-stripe solution survives Damkohler numbers much smaller than the extinction Damkohler number until the transition to four-stripe solution occurs at the first forward transition Damkohler number. At the second forward transition Damkohler number, somewhat smaller than the first transition Damkohler number, the transition to two-stripe solution occurs. However, anu further transition from two-stripe solution to one-stripe solution is not always possible even if one-stripe solution can be independently accessed for particular initial conditions. The Damkohler number ranges for two-stripe and one-stripe solutions are found to be virtually identical because each stripe is an independent structure if distance between stripes is sufficiently large. By increasing the Damkohler number, the backward transition can be observed. In comparison with the forward transition Damkohler numbers, the corresponding backward transition Damkohler numbers are always much greater, thereby indicating significant hysteresis between the stripe patterns of strained diffusion flames.

Development of $Al_2TiO_5$-Clay Composites for Infrared Radiator ($Al_2TiO_5$-점토 복합체를 이용한 적외선 방사체의 개발)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.122-127
    • /
    • 2000
  • The thermal expansion, thermal stability, mechanical strength and infrared radiative property of Al2TiO5-clay composites, prepared from synthesized Al2TiO5 and clay, were investigated to develop a material for far infrared radiators. The emittance of composites containing 10~50 wt% clay, heated at 1,20$0^{\circ}C$ for 3 h, increased with increasing clay content and emittance was about 0.3 and 0.92 in the ranges of 3,400~2,500 cm-1 and 2,500~400cm-1, respectively. The bulk density and bending strength of the Al2TiO5-clay composites increased with increasing clay content. 50 wt% Al2TiO5-50 wt% clay composite, heat-treated at 1,20$0^{\circ}C$, had an adequate strength for infrared radiators; 80 MPa. The degree of thermal expansion hysteresis decreased with increasing clay content and the mean thermal expansion coefficient increased with increasing clay content. The thermal expansion coefficient of 50 wt% Al2TiO5-50 wt% clay composite heated at 1,20$0^{\circ}C$ was 5.78$\times$10-6/$^{\circ}C$.

  • PDF

Synthesis and Characterization of Submicrometer Monodispersed Ceramic Powders of Aluminium Titanate-Mullite Composite by Sol-Gel Process

  • Kim, Ik-Jin;Kim, Do-Kyung;Lee, Hyung-Bock;Ko, Young-Shin
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1995
  • Submicrometer, monosized ceramic powder of $Al_2TiO_5$$Al_2O_3$ ethanolic solutions. All particles produced by sol-gel-process were amprphous, monodispersed and with a narrow particle-size distribution. Compacts fired above $1300^{\circ}C$ formed aluminium titanate. Mullite formed first at $1480^{\circ}C$. After decomposition test at $1100^{\circ}C$, and cyclic thermal decomposition test at 750-1400-$750^{\circ}C$ for 100hrs., aluminium titanate was well stablized by composition with mullite.

  • PDF

Study of Liquid Crystal Device using a High Thermal Photopolymer (고내열성 광폴리머 표면을 이용한 액정 표시 소자 연구)

  • 황정연;남기형;이상민;서대식;김재형;서동학
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.65-69
    • /
    • 2004
  • We synthesized photoalignment material of high thermal resistance with hydroxyl aromatic polyimide, and studied the liquid crystal (LC) aligning capabilities on the photopolymer layers. Also, electro-optical (EO) performances for the twisted-nematic (TN)-liquid crystal display (LCD) photoaligned with linearly polarized UV exposure were investigated. A good LC alignment with UV exposure on the photopolymer surface can be obtained. However, the low pretilt angles were obtained below 1$^{\circ}$. The Voltage-transmittance (V-T) curve without backflow bounce in the photoaligned TN cell with UV exposure was observed. The response time of photoaligned TN cell was measured about 24 ms. Finally, The photoaligned TN cell has few hysteresis, and shows the residual DC voltage that is less.

Study of Electro-Optical Characteristics on Photoalignment TN Cell using a High Thermal Photopolymer (고내열성 광폴리머 표면을 이용한 광배향 TN 셀의 전기광학 특성의 연구)

  • Lee, Whee-Won;Hwang, Jeoung-Yeon;Nam, Ki-Hyung;Lee, Myun-Gil;Suh, Dong-Hack;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.210-213
    • /
    • 2004
  • We synthesized photoalignment material of high thermal resistance with hydroxyl aromatic polyimide, and studied the liquid crystal (LC) aligning capabilities on the photopolymer layers. Also, electro-optical (EO) performances for the twisted-nematic (TN)-liquid crystal display (LCD) photoaligned with linearly polarized UV exposure were investigated. A good LC alignment with UV exposure on the photopolymer surface can be obtained. However, the low pretilt angles were obtained below $1^{\circ}$. The Voltage-transmittance (V-T) curve without backflow bounce in the photoaligned TN cell with UV exposure was observed. The response time of photoaligned TN cell was measured about 24 ms. Finally, The photoaligned TN cell has few hysteresis, and shows the residual DC voltage that is less.

  • PDF

Numerical Investigation of On-orbit Thermal Characteristics for Cube Satellite with Passive Attitude Stabilization Method (수동형 자세제어 안정화 방식을 적용한 큐브위성의 열적 특성분석)

  • Oh, Hyun-Ung;Park, Tae-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.5
    • /
    • pp.423-429
    • /
    • 2014
  • Passive attitude stabilization methods using the permanent magnet combined with hysteresis damper and the gravity gradient boom have been widely used for the attitude determination and control of cube satellite, due to its advantage of system simplicity. In this paper, on-orbit thermal characteristics of the cube satellite considering the attitude profiles obtained from the above passive attitude stabilization methods have been investigated through on-orbit thermal analysis. In addition, the effectiveness of the various thermal coatings on the panel for the communication antenna installation has been verified.

Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle (하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구)

  • Jeong, Soo-Jin;Jeong, Jinwoo;Ha, Seungchan
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.

Preparation of Polycrystalline Mullite Fiber Using the Sol-Gel Technique (졸-겔법에 의한 다결정 물라이트 섬유의 제조)

  • 김경용;김윤호;이수원;정형진;김구대
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.795-801
    • /
    • 1989
  • The polycrystalline mullite fiber was synthesized from various combination of starting materials including metal alkoxides and colloidal sol by the sol-gel process. The best spinnability was observed in the sol which showed shear thinning and hysteresis (i.e., thixotropic flow), indicating that the network structure was broken down as the shear rate increased. The mullite fiber was polycrystalline after firing and characterized by thermal analysis, XRD, FT-IR spectroscopy, rheological measurements, and SEM.

  • PDF