• Title/Summary/Keyword: thermal gelation

Search Result 50, Processing Time 0.024 seconds

Cure Behavior, Thermal Stability and Flexural Properties of Unsaturated Polyester/Vinyl Ester Blends (불포화 폴리에스터/비닐에스터 블렌드의 경화 거동, 열안정성 및 굴곡 특성)

  • 이종문;조동환
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.120-128
    • /
    • 2003
  • The effects of catalyst, accelerator and blend composition on the cure behavior of unsaturated polyester resin (UPE), vinyl ester resin (VE) and their blends were studied using differential scanning calorimetry(DSC). The DSC thermograms strongly depend on each variable. The result shows that the small exothermic peak at 115$^{\circ}C$ is due mainly to the UPE component in the UPE/VE blends and the large one at 134~138 $^{\circ}C$ is due mainly to the VE component. The results also indicate that the change of the DSC thermogram measured after each blend was exposed to high temperature 18$0^{\circ}C$ and the fast curing conditions of a few tens seconds provide useful information on understanding the thermal processing of a blend at high speed. The measurements of resin flow time represent that there are three distinct stages of cure in the UPE/VE blends: induction, transition and macro-gelation stages, as similarly reported for UPE by others earlier. The thermal stability and flexural properties of the cured UPE are significantly improved by blending it with the VE, depending on the composition.

The Characteristics of Holocellulose Aerogel (홀로셀룰로오스 에어로겔의 특성)

  • Kwon, Gu-Joong;Kim, Dae-Young;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.205-212
    • /
    • 2010
  • This study was carried out to investigate the characterization of aerogel made by holocellulose, the thermal properties of the aerogel, and its shapes and porous structures. The aerogel was made by holocellulose through the gelation in alkali hydroxide-urea solution and freeze drying processes. Holocellulose aerogel had porous structure such as net or sponge. The density of holocellulose aerogel was 0.04 g/$cm^3$, and the specific surface area 145.3 $m^2$/g. Although thermal degradation occurred in the range of $210{\sim}350^{\circ}C$, significant thermal degradation occurred at low temperature with low heating rate, Micropore volume was sharply increased with low heating rate. Holocellulose aerogel char obtained by carbonization with $900^{\circ}C$ and $0.5^{\circ}C$/min. heating rate had the highest surface area, 656.7 $m^2$/g. The deformed and irregular structures of holocellulose aerogel chars due to the thermal degradation were observed in SEM.

Gelation Properties and Industrial Application of Functional Protein from Fish Muscle-1. Effect of pH on Chemical Bonds during Thermal Denaturation (기능성 어육단백질의 젤화 특성과 산업적 응용-1. 가열변성 중 화학결합에 미치는 pH의 영향)

  • Jung, Chun-Hee;Kim, Jin-Soo;Jin, Sang-Keun;Kim, Il-Suk;Jung, Kyoo-Jin;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1668-1675
    • /
    • 2004
  • The effect of pH on surface hydrophobicity, sulfhydryl group, infrared spectrum, SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) pattern and enthalpy was investigated in recovered protein from mackerel and frozen blackspotted croaker by alkaline processing. Hydrophobic residue in myofibrillar protein exposed to the surface of protein, and hydrophobic interaction were the highest around 6$0^{\circ}C$. The surface hydrophobicity was different between myofibrillar protein and myofibrillar protein including sarcoplasmic protein (recovered protein). The peak at 1636 c $m^{-l}$ was increased with pH, and the recovered protein was unfolded in alkali pH. Difference of surface and total sulfhydryl group at pH 7.0 and 10 was comparative high, and decrease of surface sulfhydryl group indicated formation of S-S bonds. Mackerel and frozen blackspotted croaker in alkaline pH showed bands of polymerized myosin heavy chain on SDS-PAGE pattern. The transition temperatures of recovered protein were 33.1, 44.3 and 65.5$^{\circ}C$. Gelation of recovered protein from alkali processing was estimated by increase of $\beta$-sheet structure by pH treatment, S-S bonds by oxidation of surface sulfhydryl group in heating, polymerization of myosin heavy chain in order.r.

Function of Nonfish Proteins in Surimi-Based Cel Products (어묵제품에 있어서 단백질 첨가의 기능)

  • Chung, Kang-Hyun;Lee, Chong-Min
    • Korean journal of food and cookery science
    • /
    • v.10 no.2
    • /
    • pp.146-150
    • /
    • 1994
  • The addition of nonfish protein significantly reduced the strength of nonfish protein-incorporated surimi gel in terms of cohesiveness, rigidity and shear force. The sensory textural properties of fiberi-3ed surimi gel product was characterized as the reduction in intensity of undesirable rubberiness, chewiness and firmness, thus increasing the desirability in over all texture. Gel strength of both cohesiveness and rigidity of nonfish protein was inversely correlated with those of nonfish protein-incorporated surimi gel. The variation of texture-modifying properties of nonfish protein in surimi gel was attributed to the differences in thermal hydration and gelation properties of nonfish protein.

  • PDF

Preparation and Physical Properties of the Polyurethane Microgels Based on Poly(caprolactone) diol/Poly(ethylene glycol) (Poly(caprolactone) diol/Poly(ethylene glycol)을 기초로 한 폴리우레탄 마이크로겔의 합성 및 특성)

  • Lim, Jeong-Soo;Kim, Kong-Soo;Lee, Moo-Jae;Lee, Young-Geun
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2001
  • Polyurethane(PU) microgels were synthesized from poly(caprolactone) diol(PCD) and/or poly(ethylene glycol)(PEG), diisocyanate and 1,2,6-hexane triol by solution polymerization method. A critical gelation concentration of the PU microgels with, mole ratios of PCD/PEG were the important factors influencing the formation and property microgel or macrogels. The physical and thermal properties of the PU microgels prepared with depending upon the structure of diisocyanate, mole ratio of PCD/PEG, and molecular weight of PEG were investigated. It was found that PU microgels were distributed by polydisperse, spherical small particles below 300nm and showed the properties of low viscosity.

  • PDF

Electrochemical Properties and Synthesis of $LiCoO_2$ Using Lithium Acetate Dihydrate and Cobalt(II) Acetate Tetrahydrate (Lithium Acetate Dihydrate와 Cobalt(II) Acetate Tetrahydrate로 합성한 $LiCoO_2$의 전기화학적 특성)

  • Ha, Kyung-Hwa;Jin, Bong-Soo;Doh, Chil-Hoon;Shim, Young-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.515-515
    • /
    • 2007
  • $LiCoO_2$ powder was synthesized by Sol-Gel method using inorganic materials. The starting materials, $CH_3COOLi^*2H_2O\;and\;Co(CH_3COO)_2{^*}4H_2O$, were mixed in the atomic ratio Li/Co of 1 and dissolved in i-propanol with acetic acid. The solution was dried for gelation, and finally obtained the pre-powder. The pre-powder were studied by thermal analysis. Based on the TGA result, heat treatment was performed at various temperature(500 to $800^{\circ}C$) for 2h in air atmosphere. The crystal structure, morphology, electrochemical property were carried out using XRD, SEM, cyclic voltammetry(CV).

  • PDF

A Study on the Manufacture of Gas Insulated Switchgear Spacer Using APG Molding Process (APG 주형방식을 이용한 가스절연개폐기용 절연 스페이서 제작에 관한 연구)

  • Lee, Chanyong;Bae, Jaesung;Cho, Han-Gu;Lee, Sangmook;Lee, Jaehyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.386-391
    • /
    • 2022
  • The gas insulation switchgear, which is a device for protecting a power system, cannot be supported by the insulation gas itself in a charge unit stored in a metal container. Therefore, molding technology is required to manufacture a gas insulation switch spacer. The APG method injection molding simulation was performed by applying the variables obtained through the physical properties of an epoxy composite used for manufacturing an insulating spacer to a moldflow software. After varying the temperature conditions of heater in the simulation, the thermal characteristics and the degree of hardening of the spacer were analyzed, based on which the optimum process conditions are presented.

Study on the Crosslinking Characteristics of LDPE and LLDPE by $\gamma$-Ray Irradiation ($\gamma$-선 조사에 의한 LDPE, LLDPE의 가교특성에 관한 연구)

  • 김정일;박성현;강필현;노영창
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.657-664
    • /
    • 2001
  • In this study. the effects of ${\gamma}$-irradiation on the crosslinking of low density poly ethylene (LLDPE) and linear low density polyethylene (LLDPE) containing crosslinking agents were investigated to find the degree of crosslinking in the polymer. The LDPE and LLDPE specimens were prepared by blending crosslinking agents with each polymers, and by hot-press-molding into a sheet at 13$0^{\circ}C$. The ${\gamma}$-irradiation was conducted at 50 to 150 kGy in nitrogen. The crosslinking percentage in these specimens was measured in relation to the irradiation dose and the type of crosslinking agents. The mechanical properties, thermal properties and crystallinity of specimens were examined as a function of irradiation dose as well. It was found that the degree of crosslinking of the irradiated specimens was increased with increasing irradiation dose and by the addition of crosslinking agents. The mechanical properties and thermal properties of specimens were improved in proportion to an increase in the degree of crosslinking. The crystallinity of original resin was decreased with increasing crosslinking density.

  • PDF

Optimization to Prepare SIS-SBS Modified Asphalt for Waterproof-sheet (SIS-SBS 개질아스팔트 방수시트재 물성 최적화)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.690-697
    • /
    • 2017
  • In this study, styrene-isoprene-styrene (SIS)-styrene-butadiene-styrene (SBS) modified asphalt was prepared for waterproof-sheet to measure its properties including softening point, penetration, low temperature flexibility, viscosity and adhesion. Then the properties of SIS-SBS modified asphalt imparted with self-healing were optimized to seek for optimal compositions of SIS and SBS versus asphalt according to response surface methodology (RSM). As the content of SBS or SIS was increased, both properties of softening point and viscosity, measured at high temperature, were increased with a statistical significance. However, the increments of softening point and viscosity per unit content of SBS added, were observed to be greater than those per unit content of SIS added, respectively. It was due to the difference of thermal properties of SBS and SIS at high temperature that the cross-linking degree of SBS was increased by gelation accompanied with the increase of viscosity, while chain-entanglement of SIS was relatively reduced owing to a chain scission of poly(isoprene) blocks causing the decrease of viscosity. To the contrary, SIS-SBS modified asphalt showed a behavior of the least elasticity resulting in both the maximum of penetration and adhesion, measured at room temperature, as well as the lowest low temperature flexibility at the composition of SIS, 4 g and SBS, 8.5 g based on asphalt, 63 g.

Rheological Properties and Cure Kinetics of Cycloaliphatic/DGEBA Epoxy Blend System Initiated by Cationic Latent Curing Agent (잠재성 경화제를 이용한 Cycloaliphatic/DGEBA계 에폭시 블렌드 시스템의 유변학적 특성 및 경화 동력학)

  • 곽근호;박수진;이재락;김영근
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.227-233
    • /
    • 1998
  • The effects of 1 mol% N-benzylpyrazinium hexafluoroantimonate(BPH) as a thermal latent initiator and blend compositions composed of cycloaliphatic and DGEBA epoxies were investigated in the rheological properties and cure kinetics. Latent properties were performed by measurement of the conversion as a function of reaction time using isothermal DSC at $150^{\circ}C$ and $50^{\circ}C$ Rheological properties of the blend systems were investigated in terms of isothermal experiments using a rheometer. The gelation time was obtained from the evaluation of storage modulus (G'), loss modulus (G") and damping factor (tan$\delta$)). Cross-linking activation energy ($E_c$) was also determined from the Arrhenius equation based on gel time and curing temperature. As a result, the gel time and cross-linking activation energy increased with increasing DGEBA composition. The cure activation energies ($E_a$) were obtained by Kissinger method using dynamic DSC thermograms. In this work, the cure activation energy decreased with increasing CAE concentration, which might be resulted from the short repeat units, simple side-groups and viscosity of reaction media.edia.

  • PDF