Browse > Article
http://dx.doi.org/10.5658/WOOD.2010.38.3.205

The Characteristics of Holocellulose Aerogel  

Kwon, Gu-Joong (Institute of Forest Science, Kangwon National University)
Kim, Dae-Young (College of Life Science & Biotechnology Dongguk, University)
Kim, Nam-Hun (College of Forest & Environmental Sciences, Kangwon National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.38, no.3, 2010 , pp. 205-212 More about this Journal
Abstract
This study was carried out to investigate the characterization of aerogel made by holocellulose, the thermal properties of the aerogel, and its shapes and porous structures. The aerogel was made by holocellulose through the gelation in alkali hydroxide-urea solution and freeze drying processes. Holocellulose aerogel had porous structure such as net or sponge. The density of holocellulose aerogel was 0.04 g/$cm^3$, and the specific surface area 145.3 $m^2$/g. Although thermal degradation occurred in the range of $210{\sim}350^{\circ}C$, significant thermal degradation occurred at low temperature with low heating rate, Micropore volume was sharply increased with low heating rate. Holocellulose aerogel char obtained by carbonization with $900^{\circ}C$ and $0.5^{\circ}C$/min. heating rate had the highest surface area, 656.7 $m^2$/g. The deformed and irregular structures of holocellulose aerogel chars due to the thermal degradation were observed in SEM.
Keywords
aerogel; holocellulose; specific surface; carbonization; heating rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Innerlohinger, J., H.K. Webber, and G. Kraft. 2006. Aerocellulose: Aerogels and Aerogel-like Materials made from cellulose. Macromol Symp. 244: 126-135.   DOI   ScienceOn
2 Jin, H., Y. Nishiyama, M. Wada, and S. Kuga. 2004. Nanofibrillar cellulose aerogels, Colloids surf A: Physicochem Eng. Aspects 240: 63-67.   DOI   ScienceOn
3 Kim, U. J. and S. Kuga. 2000. Relative interaction of aromatic amines with dialdehyde cellulose gel. Celluloes 7: 287-297.   DOI   ScienceOn
4 Kistler, S. S. 1931. Coherent expanded aerogels and jellies. Nature. 127: 741.
5 Kistler, S.S. 1932. Coherent expanded-Aerogels. J. Phys. Chem. 36: 52-64.   DOI
6 K.S.W. Sing et al. 1985. International Union of Pure and Applied Chemistry. Pure Appl. Chem. 57(4): 603-619.   DOI
7 Kuga, S. 1980. New cellulose gel for chromatography. J. Chromatoga. A 195: 221-230.   DOI   ScienceOn
8 Liebner, F., A. Potthast, T. Rosenau, E. Haimer, and M. Wendland. 2008. Cellulose aerogels: Highly porous, ultra-lightweight materials. Holzforschung 62: 129-135.   DOI   ScienceOn
9 Pekala, R. W., C. T. Alviso, F. M. Kong, and S. S. Hulsey. 1992. Aerogels derived from multifunctional organic monomers. J. Non-cryst Solids 145: 90-98.   DOI   ScienceOn
10 Tan C., M. Fung, J. K. Newman, and C. Vu. 2001. Organic aerogels with very high impact strength. Adv. Mater. 13: 644-646.   DOI
11 Barrett, E. P., L. G. Jopyner, and P. H. Halenda. 1951. The determination of pore volume and area distributions in porous substances I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73: 373-380.   DOI
12 Browne, F. L. and W. K. Tang. 1962. Thermogravimetric and differential analysis of wood and wood treated with inorganic salts during pyrolysis. Fire Res. Abs. Rev. 4: 76-91.
13 Brunauer, S., P. H. Emmett, and E. Teller. 1938. Adsorption of gases in Multi molecular layers J. Am. Chem. Soc. 60: 309-319.   DOI
14 Cai, J., S. Kimura, M. Wada, S. Kuga, and L. Zhang. 2008. Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem 1: 149-154.   DOI   ScienceOn
15 Farmer, J. 1995. Method and apparatus for capacitive deionization, electrochemical purification, and regeration of electrodes, U.S. Patent No. 5,425,858.
16 Fisher, F., A. Rigacci, R. Pirard, S. Berthon-Fabry, and P. Achard. 2006. Cellulose-base aerogels. Polymer 47: 7636-7645.   DOI   ScienceOn
17 Husing, N. and U. Schubert. 1998. Aerogels-airy materials; chemistry, structure, and properties. Angew Chem. Int. Ed. 37: 22-45.   DOI
18 Gavillon, R. and T. Budtova. 2008. Aerocellulose: New highly porous cellulose prepared from cellulose-NaOH aqueous solutions. Biomacromolecules 9: 269-277.   DOI   ScienceOn
19 Ghanshyam, S. C. and L. Harinder. 2003. Novel grafted cellulose-based hydrogels for water technologies. Desalination 159: 131-138.   DOI   ScienceOn
20 Hirata, T., S. Kawamoto, and T. Nishimoto. 1991. Thermogravimetric of wood treated with water-insoluble retardants and a proposal for development of five-retardant wood materials. Fire Materials 15: 27-36.   DOI