• Title/Summary/Keyword: thermal flow pattern

Search Result 154, Processing Time 0.033 seconds

Numerical Analysis of Thermal and Flow Characteristics for an Optimum Design of Automotive Catalytic Converter (자동차용 촉매변환기의 최적설계를 위한 열 및 유동특성에 대한 수치적 연구)

  • Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.841-855
    • /
    • 1999
  • In the present work, the effect of a flow maldistribution on the thermal and conversion response of 8 monolith catalytic converter is Investigated. To achieve this goal, a combined chemical reaction and multi-dimensional fluid dynamic mathematical model has been developed. The present results show that flow uniformity within the monolith brick has 8 great impact on light-off performance of the catalytic converter. In the case of lower flow uniformity, large portions of the monolith remain cold due to locally concentrated high velocities and CO, HC are unconverted during warm-up period, which loads to retardation of light-off. It has been also found that the heat-up pattern of the monolith ill similar to the flow distribution profile, In the early stage of the reaction. It may be concluded that flow maldistribution can cause a significant retardation of the light-off and hence can eventually worsen tho conversion efficiency of automotive catalytic converter.

Mechanism of Electrohydrodynamic Flow in AC Electrowetting (AC 전기습윤 중 전기수력학 유동의 메카니즘)

  • Lee, Ho-Rim;Ko, Sung-Hee;Yun, Sung-Chan;Kang, Kwan-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2648-2651
    • /
    • 2008
  • In AC electrowetting, it has been reported that there is a flow inside droplets. The flow characteristics such as flow rate, direction and the pattern of streamline are altered according to the frequency range of applied voltage. However, the mechanism of the flow has not been explained yet. This work is concentrated on investigation of the flow mechanism when high-frequency voltage is applied to droplets. We propose that this phenomenon arises from the electro-thermal flow. A numerical analysis is performed for the needle-electrode-plane geometry in which the Coulombic force term is included in the Navier-Stokes equation. According to our analysis, electrical charge is generated due to conductivity gradient which is originated from the nonuniform Joule heating of fluid medium. The result of the analysis is compared with experimental result.

  • PDF

The effect of mold rotation on solidification process of an Al-Cu alloy (주형의 회전이 Al-Cu 합금의 응고과정에 미치는 영향)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.525-540
    • /
    • 1997
  • The effect of mold rotation on the transport process and resultant macrosegregation pattern during solidification of an Al-Cu alloy contained in a vertical axisymmetric annular mold cooled from the inner wall is numerically investigated. The mold initially at rest starts to rotate at a prescribed angular velocity simultaneously with the beginning of cooling. Computed results for a representative case show that the mold rotation essentially suppresses the development of both thermal and solutal convections in the melt, creating distinct characteristics such as the liquidus front, flow pattern and temperature distribution from those for the stationary mold. Thermal convection which develops at the early stages of cooling is soon extinguished by the rotating flow induced during spin-up, and thus does not effectively remove the initial superheat from the melt. On the other hand, solutal convection, though it weakens considerably and is confined within the mushy zone, still predominates over the solute redistribution process. With increasing the angular velocity, the solute transport in the axial direction is enhanced, whereas that in the radial direction is reduced. The final macrosegregation formed in the mold rotating at moderate angular velocities appears to be favorable in comparison with the stationary casting, in that not only relatively homogenized composition is achieved, but also a severely positive-segregated channel is restrained.

A Numerical Study on the Thermal Performance of a Solar Air Heater Depending on the Hole Configuration and Geometry in the Absorber Plate (태양열 공기가열기의 흡열판 홀 배치와 형상에 따른 열적 성능에 관한 수치해석적 연구)

  • Shin, Jae Hyuk;Boo, Joon Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.69-80
    • /
    • 2015
  • A series of numerical analyses was conducted to predict the thermal performance of a solar air heater depending on the hole configuration and geometry in the absorber plate. The planar dimensions of the prototype were 1 m (W) by 1.6 m (H), and the maximum air flow considered was $187m^3/h$. It was considered that protruding holes with a triangular opening in the absorber plate would invoke turbulence in the air flow to enhance the convection heat transfer. Six different hole configurations were investigated and compared with each other, while the hole opening height was considered as a design variable. Three-dimensional transient analyses were performed with a commercial software package on the airflow and heat transfer in the model. The numerical results were analyzed and compared from the view point of the outlet air temperature and its time response to derive the optimal hole pattern and hole opening height.

Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구)

  • Jung Hye-Mi;Um Sukkee;Sohn Young-Jun;Park Jungsun;Lee Won-Yong;Kim Chang-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF

ANALYSES OF FLUID FLOW AND HEAT TRANSFER INSIDE CALANDRIA VESSEL OF CANDU-6 REACTOR USING CFD

  • YU SEON-OH;KIM MANWOONG;KIM HHO-JUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.575-586
    • /
    • 2005
  • In a CANDU (CANada Deuterium Uranium) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with coincident loss of emergency core cooling (LOECC), as well as normal operating conditions. This study presents assessments of moderator thermal-hydraulic characteristics in the normal operating conditions and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, using the optimized scheme, analyses of real CANDU-6 in normal operating conditions and the transition condition have been performed. The present model successfully predicted the experimental results and also reasonably assessed the thermal-hydraulic characteristics of a real CANDU-6 with 380 fuel channels. A flow regime map with major parameters representing the flow pattern inside a calandria vessel has also proposed to be used as operational and/or regulatory guidelines.

A study on the flow characteristics around a suction pipe of circulation water pump in thermal power plant (화력발전소 순환수펌프 흡입관 주위에서의 유동특성에 관한 연구)

  • Choi, Sung-Tyong;Ahn, Jung-Hyeon;Moon, Seung-Jae;Lee, Jae-Heon;Yoo, Ho-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.201-204
    • /
    • 2008
  • Vortex and swirl occurring in a pump suction intake sump normally reduce the performance and disturb the safe operation of the circulation water pump in thermal power plants. This paper presents a case study of one particular intake sump design via a CFD analysis and a hydraulic model testing. The physical experiments and numerical analysis were performed under two flow and three level variation conditions. The vortex patterns around the pump suction pipe have been predicted by a commercial CFD code with the k-${\varepsilon}$ model. The model tests were conducted on a 1/10 model for a practical intake sump. The location, number and general pattern of the free surface vortex and submerged vortex predicted by CFD simulation were found to be a good agreement with those observed in the model testing.

  • PDF

Development of Standard Weather Data Correlation of Seoul

  • Kim, Seong-Sil;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.199-208
    • /
    • 2003
  • Standard temperature and absolute humidity weather data correlations of Seoul for dynamic energy simulation have been developed regressing the measured data compiled by the Korea Meteorological Adminstration during a l0-year period from 1991 to 2000. The mathematical equations can generate consistent daily and yearly variations of outdoor weather data unlike the measured data which may show abnormal behavior. Considering that each hour of the day follows a certain yearly pattern, 24 correlations are developed for each hour of the day. The derived simple mathematical equations can be used for estimating outdoor temperature and humidity conditions for any arbitrary time of the year.

Characteristics of Fire-induced Thermal-Flowfields in an Underground Utility Tunnel with Ventilation (화재 발생시 환기방식에 따른 지하공동구내 열유동 특성 연구)

  • Kim, Hong-Sik;Hwang, In-Ju;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1845-1850
    • /
    • 2003
  • The underground utility tunnels are important facility as a mainstay of country because of communication developments. The communication and electrical duct banks as well as various utility lines for urban life are installed in the underground utility tunnel systems. If a fire breaks out in this life-line tunnel, the function of the city will be discontinued and the huge damages are occurred. In order to improve the safety of life-line tunnel systems and the fire detection, the behaviors of the fire-induced smoke flow and temperature distribution are investigated. In this study we assumed that the fire is occurred at the contact or connection points of cable. Numerical calculations are carried out using different velocity of ventilation in utility tunnel. The fire source is modeled as a volumetric heat source. Three-dimensional flow and thermal characteristics in the underground tunnel are solved by means of FVM (Finite Volume Method) using SIMPLE algorithm and standard ${\kappa}-{\varepsilon}$ model for Reynolds stress terms. The numerical results of the fire-induced flow characteristics in an underground utility tunnel with different velocity of ventilation are graphically prepared and discussed.

  • PDF

A Study on the Consistency of Defrosting Performance of the Windshield in Auto-vehicles (자동차 전면 유리의 제상 성능 정합성 검증 연구)

  • Subin Kim;Youngjae Kim;Youn-Jea Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.44-50
    • /
    • 2024
  • The windshield of a vehicle plays an important role in ensuring driver safety and maintaining visibility. To prevent issues such as frost and mist from occurring inside and outside the vehicle, research related to the defrosting performance of the windshield is being conducted. Evaluating defrosting performance requires accurate thermal flow analyses. Therefore, in this study, a defrosting duct was constructed within a chamber at an actual vehicle scale to evaluate its performance, and a finite element model was developed and verified. To evaluate defrosting performance, the temperature of the windshield was measured under condition with a mass flow rate of 0.1 kg/s, which corresponds to that of a typical midsize vehicle. A total of 45 thermocouples were arranged at equal intervals of 9 widths and 5 lengths on the windshield to measure the temperature and compare it with the temperature predicted through finite element analysis. A volume grid was created in the main flow area to ensure accurate thermal flow analyses, and a prism layer was added at the interface between the windshield and fluid. In total, 6 million grid systems were formed. Comparing the temperature fields of the experimental results and the finite element analysis results confirmed a similar defrosting pattern, with an average temperature difference of 0.64K.