• Title/Summary/Keyword: thermal factor

Search Result 1,559, Processing Time 0.033 seconds

Correlation between different methodologies used to evaluate the marginal adaptation of proximal dentin gingival margins elevated using a glass hybrid

  • Hoda S. Ismail;Brian R. Morrow;Ashraf I. Ali;Rabab El. Mehesen;Franklin Garcia-Godoy;Salah H. Mahmoud
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.4
    • /
    • pp.36.1-36.17
    • /
    • 2022
  • Objectives: This study aimed to evaluate the effect of aging on the marginal quality of glass hybrid (GH) material used to elevate dentin gingival margins, and to analyze the consistency of the results obtained by 3 in vitro methods. Materials and Methods: Ten teeth received compound class II cavities with subgingival margins. The dentin gingival margins were elevated with GH, followed by resin composite. The GH/gingival dentin interfaces were examined through digital microscopy, scanning electron microscopy (SEM) using resin replicas, and according to the World Dental Federation (FDI) criteria. After initial evaluations, all teeth were subjected to 10,000 thermal cycles, followed by repeating the same marginal evaluations and energy dispersive spectroscopy (EDS) analysis for the interfacial zone of 2 specimens. Marginal quality was expressed as the percentage of continuous margin at ×200 for microscopic techniques and as the frequency of each score for FDI ranking. Data were analyzed using the paired sample t-test, Wilcoxon signed-rank test, and Pearson and Spearmen correlation coefficients. Results: None of the testing techniques proved the significance of the aging factor. Moderate and strong significant correlations were found between the testing techniques. The EDS results suggested the presence of an ion-exchange layer along the GH/gingival dentin interface of aged specimens. Conclusions: The marginal quality of the GH/dentin gingival interface defied aging by thermocycling. The replica SEM and FDI ranking results had stronger correlations with each other than either showed with the digital microscopy results.

Analysis of Warpage of Fan-out Wafer Level Package According to Molding Process Thickness (몰드 두께에 의한 팬 아웃 웨이퍼 레벨 패키지의 Warpage 분석)

  • Seung Jun Moon;Jae Kyung Kim;Euy Sik Jeon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.124-130
    • /
    • 2023
  • Recently, fan out wafer level packaging, which enables high integration, miniaturization, and low cost, is being rapidly applied in the semiconductor industry. In particular, FOWLP is attracting attention in the mobile and Internet of Things fields, and is recognized as a core technology that will lead to technological advancements such as 5G, self-driving cars, and artificial intelligence in the future. However, as chip density and package size within the package increase, FOWLP warpage is emerging as a major problem. These problems have a direct impact on the reliability and electrical performance of semiconductor products, and in particular, cause defects such as vacuum leakage in the manufacturing process or lack of focus in the photolithography process, so technical demands for solving them are increasing. In this paper, warpage simulation according to the thickness of FOWLP material was performed using finite element analysis. The thickness range was based on the history of similar packages, and as a factor causing warpage, the curing temperature of the materials undergoing the curing process was applied and the difference in deformation due to the difference in thermal expansion coefficient between materials was used. At this time, the stacking order was reflected to reproduce warpage behavior similar to reality. After performing finite element analysis, the influence of each variable on causing warpage was defined, and based on this, it was confirmed that warpage was controlled as intended through design modifications.

  • PDF

Study on the Prediction Model of Reheat Gas Turbine Inlet Temperature using Deep Neural Network Technique (심층신경망 기법을 이용한 재열 가스터빈 입구온도 예측모델에 관한 연구)

  • Young-Bok Han;Sung-Ho Kim;Byon-Gon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.841-852
    • /
    • 2023
  • Gas turbines, which are used as generators for frequency regulation of the domestic power system, are increasing in use due to the carbon-neutral policy, quick startup and shutdown, and high thermal efficiency. Since the gas turbine rotates the turbine using high-temperature flame, the turbine inlet temperature is acting as a key factor determining the performance and lifespan of the device. However, since the inlet temperature cannot be directly measured, the temperature calculated by the manufacturer is used or the temperature predicted based on field experience is applied, which makes it difficult to operate and maintain the gas turbine in a stable manner. In this study, we present a model that can predict the inlet temperature of a reheat gas turbine based on Deep Neural Network (DNN), which is widely used in artificial neural networks, and verify the performance of the proposed DNN based on actual data.

Exploring Thermoelectric Transport Properties and Band Parameters of n-Type Bi2-xSbxTe3 Compounds Using the Single Parabolic Band Model

  • Linh Ba Vu;Soo-ho Jung;Jinhee Bae;Jong Min Park;Kyung Tae Kim;Injoon Son;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.119-125
    • /
    • 2024
  • The n-type Bi2-xSbxTe3 compounds have been of great interest due to its potential to achieve a high thermoelectric performance, comparable to that of p-type Bi2-xSbxTe3. However, a comprehensive understanding on the thermoelectric properties remains lacking. Here, we investigate the thermoelectric transport properties and band characteristics of n-type Bi2-xSbxTe3 (x = 0.1 - 1.1) based on experimental and theoretical considerations. We find that the higher power factor at lower Sb content results from the optimized balance between the density of state effective mass and nondegenerate mobility. Additionally, a higher carrier concentration at lower x suppresses bipolar conduction, thereby reducing thermal conductivity at elevated temperatures. Consequently, the highest zT of ~ 0.5 is observed at 450 K for x = 0.1 and, according to the single parabolic band model, it could be further improved by ~70 % through carrier concentration tuning.

Steel Design of Continuously Reinforced Concrete Pavement based on the Width of Transverse Crack (횡방향 균열 폭에 기초한 연속철근 콘크리트포장의 철근설계)

  • Kim, Kyeong-Jin;Kim, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.106-114
    • /
    • 2009
  • The steel design based on the width of transverse crack which is the major factor to affect a long-term performance of continuously reinforced concrete pavement was developed. For this study, twenty-one cities of Texas were selected and the temperature data was collected at those locations during the past ten years. From the data, zero-stress temperatures were calculated by the PavePro program and the widths of transverse crack were analyzed by the CRCP program. The variables used to this numerical analysis were slab thickness, coefficient of thermal expansion of concrete, steel ratio, and design temperature. The total of 448 factorial runs were made and the regression analysis was performed using the results. Steel ratios from the regression equations were backcalculated and a steel design table was proposed.

Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System (CANDU 사용후핵연료 처분시스템 효율향상 개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.169-179
    • /
    • 2011
  • There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over $100^{\circ}C$ were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

A comparative analysis of gas and liquid phase standard spiked solid sorbent tubes for the determination of volatile organic compounds in indoor air by TD-GC/MS (열탈착/저온농축-GC/MS에 의한 실내공기 중 휘발성 유기화합물 정량용 기체상 및 액체상 표준물질 첨가한 고체 흡착관의 비교 분석)

  • Lim, Hyun-Woo;Jung, Sung-Won;Kang, Chul-Ho;Park, Jin-Sook;Park, Byeong Moo;Choi, Yong-Wook
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.287-297
    • /
    • 2013
  • The optimization of analytical method for the thermal desorption of seven VOCs (volatile organic compounds) by TD-GC/MS (thermal desorption-gas chromatograph-mass spectrometer) with solid phase sorbent tube, and comparative analysis for the determination of VOCs plotted by standard sorbent tubes prepared using both gas phase and liquid phase materials were investigated. The result of paired t-test showed that a liquid phase standard sorbent tube method was in agreement with a gas phase standard sorbent tube method for six species of VOCs including benzene, toluene, ethylbenzene, o-, m-, and p-xylene except for styrene at the significance level (${\alpha}=0.01$), while the 15.6% of difference in response factor between both of gas phase and liquid phase standard plotting for the determination of styrene showed that both methods were significantly different at the significance level. Therefore, the liquid phase standard plotting method was employed to reduce erroneous data for the determination of styrene including BTEX. Under the optimized analytical method by liquid phase standard sorbent tube, recovery was between $100{\pm}5%$ for 7 species of VOCs, reproducibility ranged from 0.3 to 7.7%, and method detection limit (MDL) ranged from $0.01{\mu}g/m^3$ for o-xylene to $0.27{\mu}g/m^3$ for toluene. The optimized standard method was applied to determine VOCs VOCs from indoor air of of dormitory, one bedroom apartment, and a new car.

Considerations of Environmental Factors Affecting the Detection of Underwater Acoustic Signals in the Continental Regions of the East Coast Sea of Korea

  • Na, Young-Nam;Kim, Young-Gyu;Kim, Young-Sun;Park, Joung-Soo;Kim, Eui-Hyung;Chae, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.30-45
    • /
    • 2001
  • This study considers the environmental factors affecting propagation loss and sonar performance in the continental regions of the East Coast Sea of Korea. Water mass distributions appear to change dramatically in a few weeks. Simple calculation with the case when the NKCW (North Korean Cold Water) develops shows that the difference in propagation loss may reach in the worst up to 10dB over range 5km. Another factor, an eddy, has typical dimensions of 100-200km in diameter and 150-200m in thickness. Employing a typical eddy and assuming frequency to be 100Hz, its effects on propagation loss appear to make lower the normal formation of convergence zones with which sonars are possible to detect long-range targets. The change of convergence zones may result in 10dB difference in received signals in a given depth. Thermal fronts also appear to be critical restrictions to operating sonars in shallow waters. Assuming frequency to be 200Hz, thermal fronts can make 10dB difference in propagation loss between with and without them over range 20km. An observation made in one site in the East Coast Sea of Korea reveals that internal waves may appear in near-inertial period and their spectra may exist in periods 2-17min. A simulation employing simple internal wave packets gives that they break convergence zones on the bottom, causing the performance degradation of FOM as much as 4dB in frequency 1kHz. An acoustic experiment, using fixed source and receiver at the same site, shows that the received signals fluctuate tremendously with time reaching up to 6.5dB in frequencies 1kHz or less. Ambient noises give negative effects directly on sonar performance. Measurements at some sites in the East Coast Sea of Korea suggest that the noise levels greatly fluctuate with time, for example noon and early morning, mainly due to ship traffics. The average difference in a day may reach 10dB in frequency 200Hz. Another experiment using an array of hydrophones gives that the spectrum levels of ambient noises are highly directional, their difference being as large as 10dB with vertical or horizontal angles. This fact strongly implies that we should obtain in-situ information of noise levels to estimate reasonable sonar performance. As one of non-stationary noise sources, an eel may give serious problems to sonar operation on or under the sea bottoms. Observed eel noises in a pier of water depth 14m appear to have duration time of about 0.4 seconds and frequency ranges of 0.2-2.8kHz. The 'song'of an eel increases ambient noise levels to average 2.16dB in the frequencies concerned, being large enough to degrade detection performance of the sonars on or below sediments. An experiment using hydrophones in water and sediment gives that sensitivity drops of 3-4dB are expected for the hydrophones laid in sediment at frequencies of 0.5-1.5kHz. The SNR difference between in water and in sediment, however, shows large fluctuations rather than stable patterns with the source-receiver ranges.

  • PDF

The population characteristics of Nile tilapia (Oreochromis niloticus) in Dalseo Stream, South Korea (달서천에 서식하는 나일틸라피아(Oreochromis niloticus) 개체군 특성)

  • Wang, Ju Hyoun;Choi, Jun Kil;Lee, Hwang Goo
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.1
    • /
    • pp.127-136
    • /
    • 2020
  • This study was conducted to investigate the population characteristics of Nile tilapia (Oreochromis niloticus) in the Daegu Metropolitan City thermal effluent stream (Dalseo Stream) from January to November 2019. The collected fish were identified as 4,247 individuals of 20 species from a total of eight families. The dominant species was O. niloticus with 1,306 individuals and a high relative abundance (30.75%). The water temperature of Dalseo Stream was maintained above 10℃ throughout the year, which means that O. niloticus could inhabit it even in winter. The length-weight analysis showed a regression coefficient b of 3.1496, and a condition factor (k) of 0.0025 with a positive slope. Comparing the water temperature of Dalseo Stream and the total length of O. niloticus per investigation period, the 0-age individuals appeared May 29 when the water temperature was maintained above 22℃. In conclusion, the thermal effluent of Dalseo Stream allowed O. niloticus to survive in winter and maintain stable growth conditions and life cycles. The results of this study will inform ecological information on O. niloticus, which suggests that river management efforts should consider the management of O. niloticus populations for the conservation of fish species diversity.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.