• Title/Summary/Keyword: thermal factor

Search Result 1,559, Processing Time 0.033 seconds

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.5
    • /
    • pp.127-138
    • /
    • 2012
  • We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfv$\acute{e}$nic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is ${\xi}$ > $2{\times}10^{-4}$, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfv$\acute{e}$n speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfv$\acute{e}$nic drift predicts that the postshock CR pressure saturates roughly at ~10 % of the shock ram pressure for strong shocks with a sonic Mach number ranging $20{\leq}M_s{\leq}100$. Since the amplified magnetic field follows the flow modification in the precursor, the low energy end of the particle spectrum is softened much more than the high energy end. As a result, the concave curvature in the energy spectra does not disappear entirely even with the help of Alfv$\acute{e}$nic drift. For shocks with a moderate Alfv$\acute{e}$n Mach number ($M_A$ < 10), the accelerated CR spectrum can become as steep as $E^{-2.1}$ - $E^{-2.3}$, which is more consistent with the observed CR spectrum and gamma-ray photon spectrum of several young supernova remnants.

Effect of few-walled carbon nanotube crystallinity on electron field emission property

  • Jeong, Hae-Deuk;Lee, Jong-Hyeok;Lee, Byung-Gap;Jeong, Hee-Jin;Lee, Geon-Woong;Bang, Dae-Suk;Cho, Dong-Hwan;Park, Young-Bin;Jhee, Kwang-Hwan
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.

A Study on Improvement of FBAR Duplexer for Wireless Systems (무선 시스템용 FBAR 듀플렉서 특성 개선 연구)

  • Lee, Eun-Kyu;Choi, Hyung-Rim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.388-396
    • /
    • 2010
  • In this study, we propose characteristics improvement methods according to via hole plating method for FBAR Duplexer with bandwidth($T_x4: 1850 MHz ~ 1910 MHz, $R_x$:1930 MHz ~ 1990 MHz) which is used for wireless systems. Also, we designed and fabricated $3.8{\times}3.8{\times}1.8mm$ size microminiature FBAR Duplexer based on this proposal. First of all, in this study, we fabricated pentagon shape resonators by different size to make filter combination, and their quality factor(Q) are 687 with 6.6% of ${k_{eff}}^2$. Using this resonators, we designed $3{\times}2$ Type $T_x$ filter and $3{\times}4$ Type $R_x$ filter. The transmission line, which works as phase shifter, is designed with 210 ${\mu}m$ in width and 18 mm in length Stripline type. Inductor, which is used for matching component, is designed with width of 75 ${\mu}m$, a technically achievable minimum width. And adopted plating method of filling via hole with conductive epoxy for improved grounding and thermal conductivity. Using these configuration with all of the matching component values, we found Duplexer characteristics of -1.57 dB ~ -1.73 dB in insertion loss, -56 dB in attenuation at 1850 MHz ~ 1910 MHz of $T_x$ band. Also, found -2.71 dB ~ -3.23 dB in insertion loss, -58 dB in attenuation at 1930 MHz ~ 1990 MHz of $R_x$ band.

A performance study of organic solar cells by electrode and interfacial modification (전극과 계면간의 개질에 의한 유기태양전지의 성능 연구)

  • Kang, Nam-Su;Eo, Yong-Seok;Ju, Byeong-Kwon;Yu, Jae-Woong;Chin, Byung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.67-67
    • /
    • 2008
  • Application of organic materials with low cost, easy fabrication and advantages of flexible device are increasing attention by research work. Recently, one of them, organic solar cells were rapidly increased efficiency with regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyricacidmethylester (PCBM) used typical material. To increased efficiency of organic solar cell has tried control of domain of PCBM and crystallite of P3HT by thermal annealing and solvent vapor annealing. [4-6] In those annealing effects, be made inefficiently efficiency, which is increased fill factor (FF), and current density by phase-separated morphology with blended P3HT and PCBM. In addition, increased conductivity by modified hole transfer layer (HTL) such as Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), increased both optical and conducting effect by titanium oxide (TiOx), and changed cathode material for control work function were increased efficiency of Organic solar cell. In this study, we had described effect of organic photovoltaics by conductivity of interlayer such as PEDOT:PSS and TCO (Transparent conducting oxide) such as ITO, which is used P3HT and PCBM. And, we have measured with exactly defined shadow mask to study effect of solar cell efficiency according to conductivity of hole transfer layer.

  • PDF

Shape Optimization for Performance Improvement of Ship's U-type Bellows (선박용 U형 벨로우즈의 성능 향상을 위한 형상 최적화)

  • Kim, Hyoung-Jun;Kim, Hyun-Su;Kim, Jong-Pil;Park, Jun-Hong;Kim, Myoung-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.123-129
    • /
    • 2006
  • The mechanical properties of bellows, such as the extensibility and the strength can be changed depending on the shape. For the shipbuilding material, it is desirable that the fatigue life is long due to the elastic property and the reduction of thermal stress in piping system. Nowadays, the domestic production and design of bellows are based on the E.J.M.A. Code. Therefore, the design standard is in need because of much errors and lack of detailed analysis. In this study, it is attempted to find out the optimal shape of U-type bellows using the finite element analysis. The design factors, mountain height, length, thickness, and the number of convolutions are considered and the proper values are chosen for the simulation. The results shaw that as the number of convolutions reduces, the volume decreases while the stress increases. However, as the number of convolutions increases, the volume increases above the standard volume and the stress obviously increases. In addition, the effect of the thickness of bellows on the stress is very large. Both of the mass and stress are decreasing at a certain lower value region. Also, we investigated shape optimization with considering maximum stress distribution tendency.

The TDDB Characteristics of Thin $SiO_2$ with Stress Voltage Polarity (스트레스전압 극성에 따른 얇은 산화막의 TDDB 특성)

  • Kim, Cheon-Soo;Yi, Kyoung-Soo;Nam, Kee-Soo;Lee, Jin-Hyo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.52-59
    • /
    • 1989
  • The reliability of the thin thermal oxide was investigated by using constant current stress method. Polysilicon gate MOS capacitors with oxide thickness range of 20-25nm were used in this experiment. Automatic measurement and statistical data analysis which were essential in reliability evaluation of VLSI process preformed by HP 9000 computer. Based on TDDB results, defect density, breakdown charge (Qbd) and lifetime of oxide film were evaluated. According to the polarity of the stress, some different characteristics were shown. Defect density was 62/$cm^2$ at negative gate injection. The value of Qbd was about 30C/$cm^2$ at positive gate injection, and about 21C/$cm^2$ at negative. The current density acceleration factor was 1.43$cm^2$/A for negative gate injection, and 1.25$cm^2$/A for positive gate injection.

  • PDF

Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness

  • Nawafleh, Noor A;Hatamleh, Muhanad M;Ochsner, Andreas;Mack, Florian
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.416-422
    • /
    • 2017
  • PURPOSE. To investigate the effect of reducing tooth preparation and ceramic thickness on fracture resistance of lithium disilicate crowns. MATERIALS AND METHODS. Specimen preparation included a standard complete crown preparation of a typodont mandibular left first molar with an occlusal reduction of 2 mm, proximal/axial wall reduction of 1.5 mm, and 1.0 mm deep chamfer (Group A). Another typodont mandibular first molar was prepared with less tooth reduction: 1 mm occlusal and proximal/axial wall reduction and 0.8 mm chamfer (Group B). Twenty crowns were milled from each preparation corresponding to control group (n=5) and conditioned group of simultaneous thermal and mechanical loading in aqueous environment (n=15). All crowns were then loaded until fracture to determine the fracture load. RESULTS. The mean (SD) fracture load values (in Newton) for Group A were 2340 (83) and 2149 (649), and for Group B, 1752 (134) and 1054 (249) without and with fatigue, respectively. Reducing tooth preparation thickness significantly decreased fracture load of the crowns at baseline and after fatigue application. After fatigue, the mean fracture load statistically significantly decreased (P<.001) in Group B; however, it was not affected (P>.05) in Group A. CONCLUSION. Reducing the amount of tooth preparation by 0.5 mm on the occlusal and proximal/axial wall with a 0.8 mm chamfer significantly reduced fracture load of the restoration. Tooth reduction required for lithium disilicate crowns is a crucial factor for a long-term successful application of this all-ceramic system.

Correlation between a Structural Change and a Thermoelectric Performance of a Glassy Carbon Thin Film Induced by Electron Beam Irradiation (전자빔 조사에 의한 유리상 탄소에서의 구조적 변화와 열전 성능의 상관관계)

  • Oh, Inseon;Jo, Junhyeon;An, Ki-Seok;Yoo, Jung-woo
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.156-160
    • /
    • 2016
  • Glassy carbon can be utilized in a variety of harsh environment due to exceptional thermal stability and chemically impermeability along with scalability and low electrical resistance. In this work, we studied effects of electron(e)-beam irradiation on thermoelectric properties of the glassy carbon film. E-beam irradiation triggered local crystallization and/or amorphization of glassy carbon thin films, which was determined by a Raman spectroscopy. The structural change by e-beam irradiation leads to the change in the doping level of the glassy carbon, which can be inferred from the change of a Seebeck coefficient and an electric conductivity. The optimal power factor we obtained for the irradiated glassy carbon film was ~200% higher than that of the non-irradiated sample.

Thermoluminescence from X-Ray Irradiated Beta-Eucryptite (X-선 조사된 Beta-eucryptite의 열자극 발광)

  • 김태규;이병용;최범식;강현식;추성실;황정남
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 1992
  • In this study, beta-eucryptite is fabricated and the thermal parameters of this material have been investigated. The thermoluminescence from 4MeV X-ray irradiated beta-eucryptite have been measured over the temperature range of 300K-600K. Thermoluminescence curve from X-ray irradiated beta-eucryptite shows five peaks located at 342K, 392K, 438K, 474K, and 527K. $\tau$, $\delta$ and $\omega$ of peak at 527K are 35K, 39K and 74K, respectively and this peak is found to be 2nd order kinetics. The activation energy of peak shape method is calculated to be 1.03eV and the frequency factor for 527K curve is calculated to be 3.9x10$\^$8/sec$\^$-1/. Based on the various heating rates methods, the activation energy of the peak is computed to be 1.02${\pm}$0.05eV that is similar to 1.19${\pm}$0.03eV of initial rise method. The linearity of thermoluminescence intensity and radiation flux is valid up to 50Gy and beyond higher dose the supralinearity and saturation come out.

  • PDF

Research of human body information interfacing with Far infrared and application to physical therapy (Far infrared를 이용한 생체정보 인터페이싱에 대한 연구)

  • Park, Rae Joon;Kim, Jae-Yoon
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.509-527
    • /
    • 2001
  • The Sun's ray is composed of Infrared(49%), Visible light(40%) and Ultra violet(11%), however the ray getting to the earth is FIR(Far infrared; 60%), IR(Infrared; 20%), and UV(Ultra Violet; 20%). Human beings has utilized FIR already from time immemorial. Hershel found out Infrared for the first time. in the Industrial Revolution the Infrared and FIR had been begun to use making products. In these days, with contemporary science FIR would be begun to clear up the implication in the human body and organic compound. IR classified by wavelength three parts NlR, MIR, FIR. There is FIR which is radiated from healthy human body the wave length is 8-l4m. The human body is composed of proteins which get easily changed by a thermal factor (about 42 $^{\circ}$C over). FIR with low temperature can deeply penetrate on the human body composed things without troublesomes, since FIR has effectively operated on the human body at low temperature (35-40 $^{\circ}$C). When FlR penetrated on the human body. it would inhibit the abnormal genes and cells expression, and then information of DNA and RNA would be reexpressed for arranging DNA and RNA abnormal state. As FlR's receptors in the body, it could be presumed that N-glycosyl linkage of purine and deoxyribose, RNA splicing process, and Heat shock protein. To take the FIR which was a optimized wavewlength and strength, at first, we induced the characteristic algorithm and the computerized programing. Then we formed that the formular of optimized FIR with physical, mathematical logic and theory. especially, Plank, Kirchhoff, Wien, Stefan-Boltzmann's logic and law. In the long run, the formular was induced with integration mathematical, since we had to know the molecular wavelength. Based on the induced formular as above, we programmed the optimized FlR radiating computerized program. In this research, we designed the eletronic circuit f3r interfacing with human body to diagnosis and treatment with FIR sensor which radiated FIR wavelength optimized.

  • PDF