• 제목/요약/키워드: thermal evaporator

검색결과 282건 처리시간 0.027초

Micro-Channel형 열교환기에 부착된 핀의 열접촉저항이 열전달 특성에 미치는 영향 (Effect of Thermal Contact Resistence on the Heat Transfer Characteristics of Air Flow around the Finned Micro-Channel Tube for MF Evaporator)

  • 박용석;성홍석;성동민;서정세
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.121-126
    • /
    • 2021
  • In this study, the effect of thermal contact resistance between pin-channel tubes on the heat transfer characteristics was analytically examined around the channel tubes with the pins attached to two consecutive arranged channel pipes. The numerical results showed that the heat transfer coefficient decreased geometrically as the thermal contact resistance increased, and the corresponding temperature change on the contact surface increased as the thermal contact resistance increased. The thinner the pin, the more pronounced the geometric drop in the heat transfer coefficient. It was confirmed that the higher the height of the pin, the higher was the heat transfer coefficient, however, the greater the size of the thermal contact resistance, the smaller was the heat transfer coefficient. It was found that the temperature change in the inner wall of the channel tube did not significantly affect the heat transfer characteristics owing to the thermal contact resistance. Furthermore, the velocity of air at the entrance of the channel tube was proportional to the heat transfer coefficient due to a decrease in the convective heat resistance corresponding to an increase in the flow rate.

$(Ba_{0.5}Sr_{0.5})TiO_3$ 박막의 상부전극 RTA에 따른 계면 특성 변화 (Effect of RTA on the interfacial Properties of Top Electrodes on $(Ba_{0.5}Sr_{0.5})TiO_3$)

  • 전장배;김덕규;소순진;박춘배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.740-742
    • /
    • 1998
  • In this paper, we described the effect of rapid thermal annealing on the electrical properties of interfacial layer between various top electrodes and $(Ba_{0.5}Sr_{0.5})TiO_3$ thin films. BST thin films were fabricated on Pt/TiN/$SiO_2$/Si substrate by RF magnetron sputtering technique. AI, Ag, and Cu films for the formation of top electrode were deposited on BST thin films by thermal evaporator. Top electrodes/BST/Pt capacitor annealed with rapid thermal annealing at various temperature. In $(Ba_{0.5}Sr_{0.5})TiO_3$ thin films with Cu top electrode annealed at $500^{\circ}C$, the dielectric constant was measured to the value of 366 at 1.2 [kHz] and the leakage current was obtained to the value of $5.85{\times}10^{-7}\;[A/cm^2}$ at the forward bias of 2 [V].

  • PDF

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

2 성분 혼합물을 작동유체로 사용하는 태양열 집열기용 히트파이프의 실험적 연구 (An Experimental Study of a Heat pipe with Binary Mixture Working Fluid for Solar Collector)

  • 정의국;부준홍;정원복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.13-18
    • /
    • 2003
  • Heat pipes with binary mixture fabricated and tested for applications where condenser temperature is in a range of $10^{\circ}C$ to $130^{\circ}C$. The pipe materials 8.0 mm O.D. cupper tube and the working fluids are ethanol-water mixtures. The total length of test of the heat pipe was 1710mm in which evaporator section was 1570mm, adiabatic section was 50mm and condenser section was 90mm. Mixing ratios of ethanol and water could be variable in mole fraction. Temperature of condenser section was $10^{\circ}C$, $80^{\circ}C$ and $130^{\circ}C$. Heat pipe performance experimental study was accomplished with change of mixing ratio in these temperatures. The fill charge ratio was 20% of the heat pipe volume. Wick structure was woven-wire and method of experimental work was that thermal load was increased 20W step until the heat pipe wall temperature reached at $150^{\circ}C$. Results were following: At coolant $10^{\circ}C$ and $130^{\circ}C$, mixing ratio that have beat thermal performance was 0.8M+ and at coolant $80^{\circ}C$, was 0.3 ${\sim}$ 0.5 M+.

  • PDF

VCHP에서 불응축 가스량이 열전달 성능에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the affect of Non-condensable Gas Quantity on the Heat Transfer Performances in a Variable Conductance Heat Pipe)

  • 박기호;이기우;이욱현;이계중;서정세
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.19-24
    • /
    • 2003
  • This paper is to research the heat transfer characteristic in copper-water variable conductance heat pipes(VCHP) with a non-condensable gas and gas reservoir. The heat transfer characteristics in the VCHP have not yet been studied much researches. VCHP are used in many applications. These applications range from thermal control of components and systems on satellites, to precise temperature calibration duties, conventional electronics temperature control and thermal diodes. The practical use of VCHP is a simple way to control the temperature of satellites. As the quantity of NCG was increased, there was an increase in the saturation vapor temperatures. As the input heat has loaded from 90 W to 110 W, the difference of the evaporator surface is lower than $10^{\circ}C$.

  • PDF

Au 나노 입자 마스크를 이용한 실리콘 반사방지막 제작

  • 임정우;유재수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.240-240
    • /
    • 2010
  • 반사 방지막은 LEDs, 태양전지, 센서 등의 광전소자의 효율을 향상시키는데 사용되고 있다. 일반적으로 사용되는 단층 또는 다층 박막의 반사방지막은 thermal expansion mismatch, adhesion, stability 등의 문제점을 가지고 있다. 따라서, 단층 또는 다층 박막의 반사방지막 대신에 파장이하의 주기를 갖는 구조(subwavelength structure, SWS)의 반사방지막 연구가 활발히 진행되고 있다. 입사되는 태양 스펙트럼의 파장보다 작은 주기를 갖는 SWS 구조는 Fresnel 반사율을 감소시켜 빛의 손실을 줄일 수 있다. 이러한 SWS 반사 방지막을 제작하기 위해서는 에칭 마스크가 필요하다. 에칭 마스크 제작을 위해서 사용되는 장비로는 홀로그램, 전자빔, 나노임프린트와 같은 리소그라피 방법이 있으나, 이들은 제작 비용이 고가이며 복잡한 기술을 필요로 한다. 따라서 본 실험에서는 리소그라피 방법보다 간단하고 저렴한 self-assembled Au 나노 입자 에칭 마스크를 이용한 실리콘 SWS 반사 방지막을 제작하여 구조적 및 광학적 특성을 연구하였다. Au박막은 열증발증착(thermal evaporator)법에 의해 실리콘 기판 위에 증착되었고, 급속 열처리(rapid thermal annealing, RTA)를 통해 Au 나노입자 에칭 마스크를 형성시켰다. 실리콘 SWS 반사방지막은 식각 가스 $SiCl_4$를 기반의 유도결합 플라즈마(inductively coupled plasma, ICP) 장비를 사용하여 제작되었다. Au 나노 입자의 마스크 패턴 및 에칭된 실리콘 SWS 프로파일은 scanning electron microscope를 사용하여 관찰하였으며, UV-Vis-NIR spectrophotometer를 사용하여 300-1100 nm 파장 영역에 따른 반사율을 측정하였다. ICP 에칭 조건을 변화시켜 가장 낮은 반사율을 갖는 최적화된 실리콘 SWS 반사방지막을 도출하였다. 최적화된 구조에 대해서, 실리콘 SWS 반사방지막은 벌크 실리콘 (>35%)보다 더 낮은 5% 이하의 반사율을 나타냈다.

  • PDF

원판형 LHP 증발부의 소결 금속 윅에서의 접촉 저항에 관한 연구 (A Study on the Reduction the Thermal Contact Resistances at the Interface Between a Porous Metal Wick and Solid Heating Plate for a Circular Plate LHP)

  • 조정래;최지훈;성병호;기재형;유성열;김철주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2357-2362
    • /
    • 2008
  • LHP is different from a conventional heat pipes in design and heat and fluid flow passages. The situations of the former is much complex than the latter. In LHPs, evaporation occurs at the contact interface between the heating plate and the porous wick, so some micro channels machined at the contact interface serve to let the vapor flow out of the evaporator. This complexity of contact geometry was known to cause a high resistance to heat flow. The present work was to study the problem of heat passage across the contact surface for LHPs and determine those values contact resistance. For two cases of contact structures, the thermal contact resistances were examined experimentally, one being obtained through mechanical contact under pressure and the other through sintered bonding. Nickel powder wick and copper plate were used for specimens. The result showed that a substantial reduction of contact resistance of an order of degree could be obtainable by sintered bonding.

  • PDF

실리카겔을 이용한 흡착식 담수화 시스템 개발 (Development of Adsorption Desalination System Utilizing Silica-gel)

  • 현준호;;이윤준;천원기
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

Investigation of the Thermal Performance of a Vertical Two-Phase Closed Thermosyphon as a Passive Cooling System for a Nuclear Reactor Spent Fuel Storage Pool

  • Kusuma, Mukhsinun Hadi;Putra, Nandy;Antariksawan, Anhar Riza;Susyadi, Susyadi;Imawan, Ficky Augusta
    • Nuclear Engineering and Technology
    • /
    • 제49권3호
    • /
    • pp.476-483
    • /
    • 2017
  • The decay heat that is produced by nuclear reactor spent fuel must be cooled in a spent fuel storage pool. A wickless heat pipe or a vertical two-phase closed thermosyphon (TPCT) is used to remove this decay heat. The objective of this research is to investigate the thermal performance of a prototype model for a large-scale vertical TPCT as a passive cooling system for a nuclear research reactor spent fuel storage pool. An experimental investigation and numerical simulation using RELAP5/MOD 3.2 were used to investigate the TPCT thermal performance. The effects of the initial pressure, filling ratio, and heat load were analyzed. Demineralized water was used as the TPCT working fluid. The cooled water was circulated in the water jacket as a cooling system. The experimental results show that the best thermal performance was obtained at a thermal resistance of $0.22^{\circ}C/W$, the lowest initial pressure, a filling ratio of 60%, and a high evaporator heat load. The simulation model that was experimentally validated showed a pattern and trend line similar to those of the experiment and can be used to predict the heat transfer phenomena of TPCT with varying inputs.

핀-튜브 열교환 구조를 갖는 복합집열기에서 핀 높이 및 간격에 따른 공기열 이용 액체 가열 성능에 관한 수치해석 연구 (Numerical Analysis on Heat Gain of Liquid from Ambient Air with Various Fin Heights and Pitches of Fin-and-Tube Heat Exchanger in Hybrid Solar Collector)

  • 최휘웅;파쿠르 로커만;류남진;윤정인;손창효;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제36권3호
    • /
    • pp.53-61
    • /
    • 2016
  • Solar assisted heat pump system uses solar thermal energy as a heat source of evaporator of heat pump. So, COP can be enhanced as well as collector efficiency. For improving performance of this system, some research about hybrid solar collector that has fin-and-tube heat exchanger has been conducted. This collector can get a thermal energy from ambient air for liquid heating, so heated liquid can be used as a heat source of evaporator in heat pump even the solar radiation is not enough. In this study, numerical analysis was conducted for confirming heat gain of liquid according to fin height and pitch of fin-and-tube heat exchanger in collector. As a result, higher heat gain was obtained on lower fin height and narrow fin pitch, but the pressure drop also increased with increment of heat gain. Thus the JF factor considering both heat transfer enhancement and pressure drop was investigated and the maximum value was shown when the fin height and pitch were 40mm and 45mm. So it is considered that this installation condition has a highest heat transfer improvement when comparing with pressure drop. However heat gain of liquid at this condition was less than the other installation conditions of fin pitch on same height. Then, after establishing a proper minimum heat gain of liquid, actual production and experiment of collector will be conducted with fin height and pitch showing maximum JF factor and satisfying selected minimum heat gain of liquid on the basis of results of this study.