• Title/Summary/Keyword: thermal emission camera

Search Result 23, Processing Time 0.026 seconds

Non-destructive Leakage Location Analysis Method in Substrate Behavior Response Testing of Waterproofing Membrane Systems using Thermal Emission Camera

  • Oh, Kyu-Hwan;Jiang, Bo;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.47-48
    • /
    • 2017
  • The substrate behavior response testing outlined in KS F 2622 evaluates the leakage cause of waterproofing membrane systems when subjected to the concrete joint load behaviors by removing the waterproofing layer after testing, relying mostly on visual observation and subjective analysis. A non-destructive leakage cause and failure type analysis method is proposed currently in this study by the means of detecting leakage paths using thermal emission imaging systems. Test specimens are placed in varying temperature conditions after the concrete joint movement testing and are scanned using the thermal emission camera to determine the location and dimension of the adhesion failure/leakage path beneath the waterproofing membranes.

  • PDF

Research on Measurement of Infrared Thermograpphy under High Temperature Condition (고온 환경에서의 적외선 열화상 측정에 관한 연구)

  • Jun-Sik Lee;Jae-Wook Jeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2024
  • This study conducted a measurement method of high temeprature conditions using infrared termography. All objects emit infrared light, and this emissivity has a significant impact on the temperature measurements of infrared thermal imaging (IR) cameras. In order to measure the temperature more accurately with the IR camera, correction equations were derived by measuring the emissivity according to the temperature change of combustible metals in a high-temperature environment. Two combustible metals, Mg and Al, were used to measure emissivity with changing temperature. Each metal was heated, the emissivity was measured by comparing the temperature with IR camera and thermocouples so that the correlation between temperature and emissivity could be anslyzed. As a result of the experiment, the emissivity of the metals increases as the temperature increased. This can be interpreted as a result of increased radiation emission as the thermal movement of internal metal molecules increased.

Dense Thermal 3D Point Cloud Generation of Building Envelope by Drone-based Photogrammetry

  • Jo, Hyeon Jeong;Jang, Yeong Jae;Lee, Jae Wang;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2021
  • Recently there are growing interests on the energy conservation and emission reduction. In the fields of architecture and civil engineering, the energy monitoring of structures is required to response the energy issues. In perspective of thermal monitoring, thermal images gains popularity for their rich visual information. With the rapid development of the drone platform, aerial thermal images acquired using drone can be used to monitor not only a part of structure, but wider coverage. In addition, the stereo photogrammetric process is expected to generate 3D point cloud with thermal information. However thermal images show very poor in resolution with narrow field of view that limit the use of drone-based thermal photogrammety. In the study, we aimed to generate 3D thermal point cloud using visible and thermal images. The visible images show high spatial resolution being able to generate precise and dense point clouds. Then we extract thermal information from thermal images to assign them onto the point clouds by precisely establishing photogrammetric collinearity between the point clouds and thermal images. From the experiment, we successfully generate dense 3D thermal point cloud showing 3D thermal distribution over the building structure.

Development of the Near Infrared Camera System for Astronomical Application

  • Moon, Bong-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • In this paper, I present the domestic development of near infrared camera systems for the ground telescope and the space satellite. These systems are the first infrared instruments made for astronomical observation in Korea. KASINICS (KASI Near Infrared Camera System) was developed to be installed on the 1.8m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO) in Korea. KASINICS is equipped with a $512{\times}512$ InSb array enable L band observations as well as J, H, and Ks bands. The field-of-view of the array is $3.3'{\times}3.3'$ with a resolution of 0.39"/pixel. It employs an Offner relay optical system providing a cold stop to eliminate thermal background emission from the telescope structures. From the test observation, limiting magnitudes are J=17.6, H=17.5, Ks=16.1 and L(narrow)=10.0 mag at a signal-to-noise ratio of 10 in an integration time of 100 s. MIRIS (Multi-purpose InfraRed Imaging System) is the main payload of the STSAT-3 in Korea. MIRIS Space Observation Camera (SOC) covers the observation wavelength from $0.9{\mu}m$ to $2.0{\mu}m$ with a wide field of view $3.67^{\circ}{\times}3.67^{\circ}$. The PICNIC HgCdTe detector in a cold box is cooled down below 100K by a micro Stirling cooler of which cooling capacity is 220mW at 77K. MIRIS SOC adopts passive cooling technique to chill the telescope below 200K by pointing to the deep space (3K). The cooling mechanism employs a radiator, a Winston cone baffle, a thermal shield, MLI of 30 layers, and GFRP pipe support in the system. Opto-mechanical analysis was made in order to estimate and compensate possible stresses from the thermal contraction of mounting parts at cryogenic temperatures. Finite Element Analysis (FEA) of mechanical structure was also conducted to ensure safety and stability in launching environments and in orbit. MIRIS SOC will mainly perform the Galactic plane survey with narrow band filters (Pa $\alpha$ and Pa $\alpha$ continuum) and CIB (Cosmic Infrared Background) observation with wide band filters (I and H) driven by a cryogenic stepping motor.

  • PDF

Influence of Substrate Thermal Conductivity on OLED Lifetime

  • Chung, Seung-Jun;Lee, Jae-Hyun;Jeong, Jae-Wook;Kim, Jang-Joo;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1026-1029
    • /
    • 2008
  • Temperature increase during OLED operation can significantly degrade the device lifetime. By using top-emission OLEDs fabricated on glass and silicon substrates that have different thermal conductivities, we found that efficient heat dissipation and corresponding lifetime improvement can be obtained by making a direct contact between the OLED anode and the high thermally-conductive silicon substrate. We describe substrate-dependent OLED heat dissipation behavior and OLED lifetime improvement by using infrared camera images and constant current stress test methods.

  • PDF

Color Evolution in Anodized Titanium (열산화에 의한 티타늄의 발색효과)

  • 송오성;홍석배;이정임
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.325-329
    • /
    • 2002
  • We investigated the oxide thickness and color evolution with the oxidation temperatures between $370^{\circ}C$ and $950^{\circ}C$ for 30 minutes in an electric furnace. Oxide thickness and color index were determined by cross sectional field emission scanning electron microscopy (FESEM) images and digital camera images, respectively. We confirmed that thermal oxidation was suitable for the mass production of color-titanium products, while coloring process window was narrow compared with anodizing oxidation process.

A Study on the Non-Destructive Investigation Method of Tile Defect in the Bathroom (욕실 타일 하자에 대한 비파괴 조사 방법에 관한 연구)

  • Jung, Gi-Tae;Kim, Bum-Soo;Lee, Jung-Hun;Song, Je-Young;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.209-210
    • /
    • 2017
  • Recently, bathroom tile defects in households are occurring more frequently. Until now, the destructive investigation method has been required to analyze tile defects. This study proposes a non-destructive using a thermal emission camera imaging as a possibly more precise method of investigating tile failure compared to previous existing methods.

  • PDF

A Welding Defect Inspection using an Ultrasound Excited Thermography (초음파 서모그라피를 이용한 용접 결함 검사)

  • Jo Jae-Wan;Jeong Jin-Man;Choi Yeong-Su;Jeong Seung-Ho;Jeong Hyeon-Gyu
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.148-150
    • /
    • 2006
  • In this paper, the applicability of an UET(ultrasound excited thermography) for a defect detection of the welded receptacle is described. An UET(ultrasound excited thermography) is a defect-selective and fast imaging tool for damage detection. A high power ultrasound-excited vibration energy with pulse durations of 280ms is injected into the outer surface of the welded receptacle made of Al material. An ultrasound vibration energy sent into the welded receptacle propagate inside the sample until they are converted into the heat in the vicinity of the defect. The injection of the ultrasound excited vibration energy results in heat generation so that the defect is turned into a local thermal wave transmitter. Its local heat emission is monitored by the thermal infrared camera. And they are processed by the image recording system. Measurement was performed on aluminum receptacle welded by using Nd:YAG laser. The observed thermal image revealed two area of defects along the welded seam.

  • PDF

AKARI OBSERVATIONS OF THE INTERSTELLAR MEDIUM

  • Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.187-193
    • /
    • 2012
  • AKARI has 4 imaging bands in the far-infrared (FIR) and 9 imaging bands that cover the near-infrared (NIR) to mid-infrared (MIR) contiguously. The FIR bands probe the thermal emission from sub-micron dust grains, while the MIR bands observe emission from stochastically-heated very small grains and the unidentified infrared (UIR) band emissions from carbonaceous materials that contain aromatic and aliphatic bonds. The multi-band characteristics of the AKARI instruments are quite efficient to study the spectral energy distribution of the interstellar medium, which always shows multi-component nature, as well as its variations in the various environments. AKARI also has spectroscopic capabilities. In particular, one of the onboard instruments, Infrared Camera (IRC), can obtain a continuous spectrum from 2.5 to $13{\mu}m$ with the same slit. This allows us to make a comparative study of the UIR bands in the diffuse emission from the 3.3 to $11.3{\mu}m$ for the first time. The IRC explores high-sensitivity spectroscopy in the NIR, which enables the study of interstellar ices and the UIR band emission at $3.3-3.5{\mu}m$ in various objects. Particularly, the UIR bands in this spectral range contain unique information on the aromatic and aliphatic bonds in the band carriers. This presentation reviews the results of AKARI observations of the interstellar medium with an emphasis on the observations of the NIR spectroscopy.