• Title/Summary/Keyword: thermal donor

Search Result 84, Processing Time 0.027 seconds

Synthesis of 3-Chromonealdehyde(2,2-disubstituted)hydrazone Derivatives for Green Light Emitting Materials (녹색발광 3-크로몬알데히드(2,2-이치환)하이드라존 유도체의 합성)

  • Chung, Pyung Jin;Chang, Hong Joon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.670-674
    • /
    • 2009
  • 3-Chromonealdehyde(2,2-disubstituted)hydrazone derivatives were synthesized by dehydration condensation. They are green-emitting materials for organic light emitting device (OLED) composed of electron acceptor of 3-chromonealdehydes and electron donor of 2,2-disubstituted hydrazones by a conjugated structure. The structural properties of reaction products were analyzed FT-IR and $^1H-NMR$ spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties can be determined by excitation spectra and emission spectra, respectively.

Optical Properties of Al and Al2O3 Coated ZnO Nanorods (원자층증착법으로 ZnO:Al과 Al2O3를 코팅한 ZnO 나노막대의 광학적 특성)

  • Shin, Y.H.;Lee, S.Y.;Kim, Yong-Min
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.385-390
    • /
    • 2010
  • We studied the optical characteristics of ZnO:Al and $Al_2O_3$ coated ZnO nanorods. When ZnO:Al is deposited around the undoped ZnO nanorods, thermal diffusion of Al into ZnO gives rise to decrease the binding energy of neutral donor bound exciton whereas an insulating Al2O3 is coated around ZnO, we found that semiconducor-insulator interface states play an important role in optical quenching.

Synthesis of DCM Classes Having p-Substituted Aminostyryl Groups for Red-Emitting Materials (각종 p-치환아미노스티릴기를 갖는 적색발광재료용 DCM류의 합성)

  • Chung, Pyung Jin;Sung, Jin Hee
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.609-613
    • /
    • 2006
  • 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) derivatives were synthesized by Knoevenagel condensation. They are red-emitting materials for OLED (Organic Light-Emitting Diode) composed of electron donor of aminostyryl groups and electron acceptor of two cyano(nitrile)groups in a conjugated structure. The structural properties of reaction products were analyzed by FT-IR and $^1H-NMR$ spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visible and PL properties can be determined by exitation and emission spectra, respectively.

PL Study on ZnO Thin Films After H-plasma Treatment (수소 플라즈마 처리를 거친 ZnO 박막에 대한 PL 연구)

  • Cho, Jaewon;Rhee, Seuk Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.17-20
    • /
    • 2015
  • The physical effects of H-plasma treatment on ZnO thin film have been studied using photoluminescence(PL) spectroscopy. Four characteristic peaks have been identified: (i) $D^0X$ peak (neutral donor-bound exciton), showing relatively small integrated intensity after H-plasma treatment, indicates that H-plasma passivates the neutral donors in ZnO at low temperatures. The rapid decrease in the integrated intensity of the peak as the temperature goes up is considered to be due to the ionization of neutral donors. (ii) H-related complex-bound exciton peak appears at the low temperatures (10 K~80 K) after H-plasma treatment, showing the same thermal evolution as $D^0X$ peak. (iii) FX (free exciton) peak starts to show up at 60 K and grows more and more as the temperature goes up, which is considered to be related to the increase in free electron concentration in the film. (iv) violet band is intensified after H-plasma, which means more defects and impurities are generated by H-plasma process.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

The microstructure and conduction mechanism of the nonlinear ZnO varistor with $Al_2O_3$ additions ($Al_2O_3$가 미량 첨가된 비선형성 ZnO 바리스터의 미세구조와 전도기구)

  • 한세원;강형부;김형식
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.708-718
    • /
    • 1996
  • The microstructure and electrical properties of the nonlinear ZnO varistor with A1$_{2}$ $O_{3}$ additions is investigated. The variation of nonlinear behavior with A1$_{2}$ $O_{3}$ additions is indicated from J-E and C-V measurement to be a result of the change of the interface defects density $N_{t}$ at the grain boundaries and the donor concentration $N_{d}$ in the ZnO grains. The optimum composition which has the nonlinear coefficients of -57 was observed in the sample with 0.005wt% A1$_{2}$ $O_{3}$ additions. The conduction mechanism at the pre-breakdown region is consistent with a Schottky thermal emission process obeying a relation given by $J^{\var}$exp[-(.psi.-.betha. $E^{1}$2/)kT] and the conduction process at the breakdown region follows a Fowler-Nordheim tunneling mechanism of the form $J^{\var}$exp(-.gamma./E).

  • PDF

Optical characteristics of p-type ZnO epilayers doped with Sb by metalorganic chemical vapor deposition

  • Kwon, B.J.;Cho, Y.H.;Choi, Y.S.;Park, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.122-122
    • /
    • 2010
  • ZnO is a widely investigated material for the blue and ultraviolet solid-state emitters and detectors. It has been promoted due to a wide-band gap semiconductor which has large exciton binding energy of 60 meV, chemical stability and low radiation damage. However, there are many problems to be solved for the growth of p-type ZnO for practical device applications. Many researchers have made an efforts to achieve p-type conductivity using group-V element of N, P, As, and Sb. In this letter, we have studied the optical characteristics of the antimony-doped ZnO (ZnO:Sb) thin films by means of photoluminescence (PL), PL excitation, temperature-dependent PL, and time-resolved PL techniques. We observed donor-to-acceptor-pair transition at about 3.24 eV with its phonon replicas with a periodic spacing of about 72 meV in the PL spectra of antimony-doped ZnO (ZnO:Sb) thin films at 12 K. We also investigate thermal activation energy and carrier recombination lifetime for the samples. Our result reflects that the antimony doping can generate shallow acceptor states, leading to a good p-type conductivity in ZnO.

  • PDF

Enhancement of thermoelectric properties of MBE grown un-doped ZnO by thermal annealing

  • Khalid, Mahmood;Asghar, Muhammad;Ali, Adnan;Ajaz-Un-Nabi, M.;Arshad, M. Imran;Amin, Nasir;Hasan, M.A.
    • Advances in Energy Research
    • /
    • v.3 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, we have reported an enhancement in thermoelectric properties of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at $500^{\circ}C-800^{\circ}C$, keeping a step of $100^{\circ}C$ for one hour. Room temperature Seekbeck measurements showed that Seebeck coefficient and power factor increased from 222 to $510{\mu}V/K$ and $8.8{\times}10^{-6}$ to $2.6{\times}10^{-4}Wm^{-1}K^{-2}$ as annealing temperature increased from 500 to $800^{\circ}C$ respectively. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Synthesis of Green Emitting Materials for OLED (유기발광 디바이스용 녹색 발광재료의 합성)

  • Chung, Pyung Jin;Kim, Mi Rae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.594-598
    • /
    • 2011
  • We study on the preparation of green emitting materials for organic light emitting device. 3-chromonealdehyde derivatives possessing a conjugated structure, which were composed of electron acceptor of 3-chromonealdehydes and electron donor of diamines, were synthesized by dehydration-condensation process. The structural properties of reaction products were analyzed FT-IR and $^1H-NMR$ spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties can be determined by excitation spectra and emission spectra, respectively.

Synthesis and Latent Characteristics of Thermal Cationic Latent Catalysts by Change of Substituent (치환기 변화에 따른 열잠재성 양이온 촉매의 합성과 잠재특성 연구)

  • Park, Soo-Jin;Heo, Gun-Young;Lee, Jae-Rock;Shim, Sang-Yeon;Suh, Dong-Hack
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.558-567
    • /
    • 2001
  • The syntheses of thermal latent catalysts have been carried out by modifying the substituent of pyrazinium salts. The thermal latent properties and cure behaviors of difunctional epoxy resin (diglycidylether of bisphenol-A, DGEBA) with 1 wt% of catalyst as an initiator were investigated by dynamic DSC method. As a result, the synthesized catalysts showed the good latent thermal properties in epoxy system. With increasing the basicity of substituted catalyst, the cure temperature and activation energy of epoxy system were increased, whereas the activity was decreased. This was probably due to the fact that the activity and cure behavior were controlled by ring strain and basicity of substituent. Consequently, the catalyst activity modified by methyl group as an electron donor was decreased in increasing of basicity in an initiation step of epoxy cure system. This is due to a decreasing of stabilities of both leaving group of pyrazinium salts and benzyl cation. However, the catalyst activity modified by cyano group as an electron acceptor was increased in increasing the stability of benzyl cation resulting from organic effects and resonance.

  • PDF