• Title/Summary/Keyword: thermal dispersion

Search Result 498, Processing Time 0.025 seconds

Impact of Phonon Dispersion on Thermal Conductivity Model (포논 분산이 열전달 모델에 미치는 영향)

  • Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1165-1173
    • /
    • 2003
  • The effects of (1) phonon dispersion on thermal conductivity model and (2) differentiation of group velocity and phase velocity are examined for germanium. The results show drastic change of thermal conductivity regardless of the same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon on the thermal conductivity at high temperatures is reassessed by considering more rigorous dispersion model. Holland model, which is commonly used for modeling thermal conductivity, underestimates the scattering rate for TA phonon at high frequency. This leads the conclusion that TA is dominant heat transfer mode at high temperatures. But according to the rigorous consideration of phonon dispersion, the reduction of thermal conductivity is much larger than the estimation of Holland model, thus the TA at high frequency is expected to be no more dominant heat transfer mode. Another heat transfer mechanism may exist at high temperatures. Two possible explanations we the roles of (1) Umklapp scattering of LA phonon at high frequency and (2) optical phonon.

Impact of Phonon Dispersion on Thermal Conductivity Model (Phonon Dispersion이 열전달 모델에 미치는 영향)

  • Chung, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1627-1632
    • /
    • 2003
  • The effect of (1) phonon dispersion in thermal conductivity model and (2) the differentiation of group velocity and phase velocity for Ge is examined. The results show drastic change of thermal conductivity regardless of using same relaxation time model. Also the contribution of transverse acoustic (TA) phonon and longitudinal acoustic (LA) phonon is changed by considering more rigorous dispersion model. Holland model underestimates the scattering rate for high frequency TA, so misleading conclusion, i.e. TA is dominant heat transfer mode at high temperature. But the actual reduction of thermal conductivity is much larger than the estimation by Holland model and high frequency TA is no more dominant heat transfer mode. Another heat transfer mechanism may exist for high temperature. Two possible explanations are (1) high frequency LA by Umklapp scattering and (2) optical phonon.

  • PDF

Application of Thermal Discharge Dispersion Model on Cheonsu Bay (천수만 해역에서 온배수 확산모델의 적용)

  • 박영기
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.169-180
    • /
    • 1995
  • This Daper presents effective simulation of the dispersion of thermal discharge which can be relesed at Boryong power plant. Applied numerical models are finite difference method for hydrodynamic analysis and Masch-model comprised of conditions for ambient current velocity. Application of these models is done in Cheonsu Bay Summing up the results of this study are as follows; 1. It is found that the result for measurements of temperature appears high at southwardly Songdo on flood. The reason is that tidal currents which flowed north direction were accompanied with southwardly dispersed thermal discharge. A minute Particle of thermal Plume has a tendency to dispels inward Deacheon Bay. 2. According to the results of numerical experiment, maximum distance for thermal discharge dispersion appeared 10.8 km at lower part and 8.6 km at upper part with power plant outlet as starting point. 3. Comparative the numerical simulation and Airbone Multispectral Scanner indicated that thermal discharge should be verified separative phenomena. The simulated results were compared with field data set showing good agreement. It is concluded that these model can be simulated well.

  • PDF

Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide

  • Zaidi, M.G.H.;Joshi, S.K.;Kumar, M.;Sharma, D.;Kumar, A.;Alam, S.;Sah, P.L.
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.218-227
    • /
    • 2013
  • A supercritical carbon dioxide (SCC) process of dispersion of multi-walled carbon nanotubes (MWCNTs) into epoxy resin has been developed to achieve MWCNT/epoxy composites (CECs) with improved mechanical, thermal, and electrical properties. The synthesis of CECs has been executed at a MWCNT (phr) concentration ranging from 0.1 to 0.3 into epoxy resin (0.1 mol) at 1800 psi, $90^{\circ}C$, and 1500 rpm over 1 h followed by curing of the MWCNT/epoxy formulations with triethylene tetramine (15 phr). The effect of SCC treatment on the qualitative dispersion of MWCNTs at various concentrations into the epoxy has been investigated through spectra analyses and microscopy. The developed SCC assisted process provides a good dispersion of MWCNTs into the epoxy up to a MWCNT concentration of 0.2. The effects of SCC assisted dispersion at various concentrations of MWCNTs on modification of mechanical, thermal, dynamic mechanical thermal, and tribological properties and the electrical conductivity of CECs have been investigated.

Longitudinal Thermal Dispersion Enhancement by Oscillating Flow in a Grooved Channel (그루브 채널에서 왕복 유동에 의한 열확산 촉진에 관한 연구)

  • Kim, Seo-Young;Kim, Su-Hyeon;Kang, Byung-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1075-1082
    • /
    • 2005
  • The characteristics of longitudinal dispersion enhancement by the flow oscillation are numerically studied according to various groove geometries in a 2-D channel in the present study. The length of expanded section l$_{1}$/h$_{1}$ is varied from 0 to 8.75. The oscillating flow condition is given at both side ends, i.e., u = Asin ($2{\pi}ft$) The non-dimensional temperatures at both side ends are set to zero. The bottom and top walls are adiabatic. The local heat sources are located at the middle of the groove wall. In order to solve the governing equations, the SIMPIER algorithm is employed. The present results indicate that maximum longitudinal thermal dispersion can be achieved when the area ratio of the expanded section to the contracted section in the grooved channel becomes 1.

Preparation of PET Nanocomposites: Dispersion of Nanoparticles and Thermal Properties

  • Her, Ki-Young;Kim, Dae-Heum;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.71-73
    • /
    • 2008
  • The development of polymer/inorganic nanocomposites has attracted a great deal of interest due to the improved hybrid properties derived from the two different components. Various nanoscale fillers have been used to enhance polymer mechanical and thermal properties, such as toughness, stiffness, and heat resistance. The effects of the filler on the final properties of the nanocomposites are highly dependent on the filler shape, particle size, aggregate size, surface characteristics, polymer/inorganic interactions, and degree of dispersion. In this paper, we describe the influence of different $CaCO_3$ dispersion methods on the thermal properties of polyethylene terephthalate (PET)/$CaCO_3$ composites: i.e., the adsorption of $CaCO_3$ on the modified PET surface, and the hydrophobic modification of the hydrophilic $CaCO_3$ surface. We prepared PET/$CaCO_3$ nanocomposites using a twin-screw extruder, and investigated their thermal properties and morphology.

PERFORMANCE EVALUATION OF U-Mo/Al DISPERSION FUEL BY CONSIDERING A FUEL-MATRIX INTERACTION

  • Ryu, Ho-Jin;Kim, Yeon-Soo;Park, Jong-Man;Chae, Hee-Taek;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.409-418
    • /
    • 2008
  • Because the interaction layers that form between U-Mo particles and the Al matrix degrade the thermal properties of U-Mo/Al dispersion fuel, an investigation was undertaken of the undesirable feedback effect between an interaction layer growth and a centerline temperature increase for dispersion fuel. The radial temperature distribution due to interaction layer growth during irradiation was calculated iteratively in relation to changes in the volume fractions, the thermal conductivities of the constituents, and the oxide thickness with the burnup. The interaction layer growth, which is estimated on the basis of the temperature calculations, showed a reasonable agreement with the post-irradiation examination results of the U-Mo/Al dispersion fuel rods irradiated at the HANARO reactor. The U-Mo particle size was found to be a dominant factor that determined the fuel temperature during irradiation. Dispersion fuel with larger U-Mo particles revealed lower levels of both the interaction layer formation and the fuel temperature increase. The results confirm that the use of large U-Mo particles appears to be an effective way of mitigating the thermal degradation of U-Mo/Al dispersion fuel.

Thermal Dispersion Method for a Medical Ultrasonic Phased Array Transducer (의료용 초음파 위상배열 트랜스듀서의 열 분산 방안)

  • Lee, Wonseok;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.210-218
    • /
    • 2015
  • When the driving voltage of an ultrasound transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer that can cause patient's skin burn and degradation of transducer performance. Hence, in this paper, a method to disperse the heat of the transducer has been studied. The phased array transducer having 3 MHz center frequency and 32 channels was selected for analyses of the thermal dispersion. First, mechanism of the heat generation was investigated in relation to the transducer operation through theoretical analysis, and material damping and sound pressure amplitude were confirmed to be influential on the heat generation. Further, we investigated the effects of the properties of the materials constituting the transducer on the thermal dispersion through finite element analysis. Based on the analysis results, we determined the thermal properties of the constituent materials that could facilitate the thermal dispersion inside the transducer. The determined thermal properties were applied to the finite element model, and the results showed that the maximum temperature at an acoustic lens contacting with a patient was decreased to 51 % of its initial value.

Modification of Carbon Nanotube for the Improvement of Dispersion and the Dispersion Characteristics of Carbon Nanotube in Polyurethane (분산성 향상을 위한 탄소나노튜브의 개질과 폴리우레탄과의 분산 특성)

  • Park, Kyung-Soon;Kim, Seung-Jin;Kim, Jeong-Hyun;Park, Jun-Hyeong;Kwon, Oh-Kyung
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • The thermal treatment for carbon nanotube was applied to remove the water, metal catalyst and other impurities in carbon nanotube. The surface of carbon nanotube was changed into open structure with acid treatment by mixed solution of $HNO_3$ and $H_2SO_4$. The dispersion property of the functionalized and modified carbon nanotube was assessed with naked eyes by dispersing it in DMF. Carbon nanotube mixd polyurethane film was made to estimate the dispersion property by reflectance of the film with UV-Vis spectrometer. Also the internal structure of carbon nanotube was observed with SEM and TEM and thermal pyrolysis property of the carbon nanotube was measured by TGA and DSC. The surface modification of carbon nanotube by thermal and acid treatments improved the dispersion property of carbon nanotube/polyurethane mixed materials.

Modeling and Evaluation on the Dispersion of Air Pollutants in the Large Scale Thermal Power Plant (대단위발전소의 대기오염물질 확산에 관한 모델링 및 평가에 관한 연구)

  • Chun, Sang-Ki;Lee, Sung-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 1997
  • This paper presents the results from the comparison analysis and evaluation between the air pollutant dispersion modeling results and the observation data in the area within a 10 km radius from the Boryong thermal power plants. The observation data used in this study were the air pollutant concentrations which had been continuously measured from 8 locations around the Boryong power plants by TMS(tele-monitoring system) for 3 months from September to November, 1996. The short-term and long-term predictions were carried out using ISC3 model and LPDM(Lagrangian Panicle Dispersion Model). The results of ISC3 modeling in a short-term showed highly as 0.7 in a correlation coefficient, but in a long-term showed just 0.54. On the other hand, LPDM showed 0.78 in a correlation coefficient for a long-term, but in a short-term showed highly value than the observation concentrations.

  • PDF