Browse > Article
http://dx.doi.org/10.3795/KSME-B.2005.29.10.1075

Longitudinal Thermal Dispersion Enhancement by Oscillating Flow in a Grooved Channel  

Kim, Seo-Young (한국과학기술원 열유동제어연구센터)
Kim, Su-Hyeon (LS 전선)
Kang, Byung-Ha (국민대학교 기계자동차공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.29, no.10, 2005 , pp. 1075-1082 More about this Journal
Abstract
The characteristics of longitudinal dispersion enhancement by the flow oscillation are numerically studied according to various groove geometries in a 2-D channel in the present study. The length of expanded section l$_{1}$/h$_{1}$ is varied from 0 to 8.75. The oscillating flow condition is given at both side ends, i.e., u = Asin ($2{\pi}ft$) The non-dimensional temperatures at both side ends are set to zero. The bottom and top walls are adiabatic. The local heat sources are located at the middle of the groove wall. In order to solve the governing equations, the SIMPIER algorithm is employed. The present results indicate that maximum longitudinal thermal dispersion can be achieved when the area ratio of the expanded section to the contracted section in the grooved channel becomes 1.
Keywords
Oscillating flow; Thermal Dispersion; Effective Thermal Diffusivity; Grooved Channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ghaddar, N. K., Magen, M., Mikic, B. B. and Patera, A. T., 1986, 'Numerical Investigation of Incompressible Flow in Grooved Channels. Part 2. Oscillatory Heat Transfer Enhancement,' J. Fluid Mech., Vol. 168, pp. 541-567   DOI   ScienceOn
2 Greiner, M., 1991, 'An Experimental Investigation of Resonant Heat Transfer Enhancement in Grooved Channel,' Int. J. Heat Mass Transfer, Vol. 34, pp. 1383-1391   DOI   ScienceOn
3 Jaeger, M. J. and Kurzweq, U. H., 1983, 'Determination of the Longitudinal Dispersion Coefficient on Flows Subjected to High-Frequency,' Phys. Fluids, Vol. 26, No.6, pp. 1380-1382   DOI
4 Kurzweq, U. H., Howell, G. and Jaeger, M. J., 1984, 'Enhanced Dispersion in Oscillatory Flows,' Phys. Fluids, Vol. 27, No. 5, pp. 1046-1048   DOI   ScienceOn
5 Kurzweq, U. H. and Zhao, L., 1984, 'Heat Transfer by High-Frequency Oscillation: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities,' Phys. Fluids, Vol. 27, No. 11, pp. 2624-2627   DOI   ScienceOn
6 Kim, S. Y., Kang, B. H. and Hyun, J. M., 1993, 'Heat Transfer in the Thermally Developing Region of a Pulsating Channel Flow,' Int. J. Heat Mass Transfer, Vol. 36, pp. 4257-4266   DOI   ScienceOn
7 Xiaofeng, Y. and Masashi, S., 2001, 'Augmented Longitudinal Diffusion in Grooved Tubes for Oscillatory Flow,' Int. J. Heat Mass Transfer, Vol. 44, pp. 633-644   DOI   ScienceOn
8 Kim, S. Y., Kang, B. H. and Hyun, J. M., 1998, 'Forced Convection Heat Transfer from Two Heated Blocks in Pulsating Flow,' Int. J. Heat Mass Transfer, Vol. 41, No.3, pp. 625-634   DOI   ScienceOn
9 Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York
10 Joshi, C. H., Kamm, R. D., Drazen, J. M. and Slutsky, A. S., 1983, 'An Experimental Study of Gas Exchange in Laminar Oscillatory Flow,' J. Fluid Mech., Vol. 133, pp. 245-254   DOI   ScienceOn
11 Watson, E. J., 1983, 'Diffusion in Oscillatory Pipe Flow,' J. Fluid Mech., Vol. 133, pp. 233-244   DOI   ScienceOn
12 Kurzweq, U. H., 1985, 'Enhanced Heat Conduction in Oscillating Viscous Flows Within Parallel-Plate Channels,' J. Fluid Mech., Vol. 156, pp. 291-300   DOI   ScienceOn
13 Kurzweq, U. H., 1985, 'Enhanced Heat Conduction on Fluids Subjected to Sinusoidal Oscillations,' J. Heat Transfer, Vol. 107, pp. 459-462   DOI
14 Ghaddar, N. K., Korczak, K. Z., Mikic, B. B. and Patera, A. T., 1986, 'Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1. Stability and Self-Sustained Oscillations,' J. Fluid Mech., Vol. 163, pp. 99-127   DOI   ScienceOn