• Title/Summary/Keyword: thermal design

Search Result 4,503, Processing Time 0.031 seconds

Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles

  • Park, Chan-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.882-887
    • /
    • 2014
  • In this paper, the water cooling method among the forced coolant cooling methods is considered to be applied to the 110kW-class IPMSM for railway vehicles. First, basic thermal property analysis of the IPMSM is conducted using the three-dimensional thermal equivalent network method. Then, based on the results of the basic thermal property analysis, some design requirements for the water cooling jacket are deduced and a basic design of the water cooling jacket is carried out. Finally, thermal equivalent circuit of the water cooling jacket is attached to the IPMSM's 3D thermal equivalent network and then, the basic thermal and effectiveness analysis are conducted for the case of applying the water cooling jacket to the IPMSM. In the future, the thermal variation trends inside the IPMSM by the application of the water cooling jacket is expected to be quickly and easily predicted even at the design step of the railway traction motor.

Comparative Evaluation of Thermal Design Parameters of Different Sizes of Circulating Fluidized Bed Boiler (규모별 순환유동상 보일러의 열설계 변수 비교 평가)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2011
  • The present paper discusses thermal design parameters of different sizes of circulating fluidized bed (CFB) boilers with capacities ranging from 2 MWe pilot scale boiler to a 600 MWe utility boiler. Physical boiler size and shape of furnace were identified and dimensional data have been summarized. By performing thermal design for each of the boilers, heat transfer surface area, furnace shape and size, and allocation of heat transfer surface for water-steam side heat absorption have been recalculated, and presented. Although boilers may have significantly different capacity, the facilities have common design parameters, when they are evaluated as basic thermal design processes. The significance of thermal design procedure is explicitly discussed.

Design Optimization of Micro Thermal Actuator Considering Structural Performance (구조역학적 성능을 고려한 마이크로 열변형 액추에이터의 최적설계)

  • Hwang, Kyung-Ho;Lee, Jong-Soo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.4 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • The paper deals with the numerical analysis and design optimization of polysilicon micro thermal flexure actuator. The deflection of a thermal actuator is implicitly related to the actuation time so that such deflection is to be maximized under the consideration of structural performances such as maximum stress and natural frequencies. At first, the structural formulation of a thermal actuator is reviewed, and its CAE based simulation is performed to verify the numerical model. A parametric study is then conducted to identify the mainly effective design variables. Finally, the design of a micro thermal actuator is explored in the context of deterministic optimization and reliability based design optimization in the present study.

  • PDF

The Review of Design and Installation of the Thermal Relief Valve with It's Surrounding Facility in a Chemical Plant Piping System (배관계에서 열팽창을 고려한 열팽창매출변 및 주변설비의 설계와 설치에 관한 고찰)

  • 차순철;김영배
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.3
    • /
    • pp.104-114
    • /
    • 1997
  • Throughout the practical process engineering design and commissioning 8E startup experiences focused on chemical process safety, the review of design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is made to help the better understanding of the piping system of characteristics of thermal relief valve which Is consisting of theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly recommended that following topic should be implemented during thermal relief valve design, installation and normal operation as well.

  • PDF

A Study on Engineering Design IT Installation of Thermal Relief Valve in a Chemical Plant (화학플랜트에서의 릴리프밸브 설계에 관한 고찰)

  • Char, Soon-Chul;Hwang, Soon-Yong;Jang, Seo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.4
    • /
    • pp.39-51
    • /
    • 2006
  • Based on the practical process engineering design and commissioning and startup operation experiences focused on chemical process safety, the comprehensive review of engineering design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is provided to enhance the better understanding of the piping system of characteristics of thermal relief valve which is comprised of the theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve engineering design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly suggested that following topic should be implemented during thermal relief valve engineering design, installation and normal operation as well.

On-orbit Thermal Analysis for Verification of Thermal Design of Korea Pathfinder Lunar Orbiter (시험용 달 궤도선의 열설계 검증을 위한 궤도 열해석)

  • Jang, Byung-Kwan;Lee, Jang-Joon;Hyun, Bum-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1028-1036
    • /
    • 2018
  • KARI plans to launch Korea Pathfinder Lunar Orbiter (KPLO) to the Moon by December 2020 for the first step of the Korea Lunar Exploration Project. This orbiter will be launched to obtain lunar exploration technologies and science data in advance before launching a main orbiter and a lunar probe. This paper describes the verification of thermal design for the orbiter. It is exposed to more extreme thermal environment than that of low Earth orbit satellite due to the heavy infrared emission of the Moon. Accordingly, a thermal design considering this environment is needed to maintain the temperature of payloads and components equipped in the orbiter within operating temperature range in all orbits. We performed the thermal analysis for Earth-Moon transfer orbit, lunar mission orbit and lunar eclipse required for thermal design verification of the lunar orbiter. As a result, this thermal design met the design requirements.

Thermal Design and Analysis for Space Imaging Sensor on LEO (지구 저궤도에서 운용되는 영상센서를 위한 열설계 및 열해석)

  • Shin, So-Min;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.474-480
    • /
    • 2011
  • Space Imaging Sensor operated on LEO is affected from the Earth IR and Albedo as well as the Sun Radiation. The Imaging Sensor exposed to extreme environment needs thermal control subsystem to be maintained in operating/non-operating allowable temperature. Generally, units are periodically dissipated on spacecraft panel, which is designed as radiator. Because thermal design of the imaging sensor inside a spacecraft is isolated, heat pipes connected to radiators on the panel efficiently transfer dissipation of the units. First of all, preliminary thermal design of radiating area and heater power is performed through steady energy balance equation. Based on preliminary thermal design, on-orbit thermal analysis is calculated by SINDA, so calculation for thermal design could be easy and rapid. Radiators are designed to rib-type in order to maintain radiating performance and reduce mass. After on-orbit thermal analysis, thermal requirements for Space Imaging Sensor are verified.

Design of Thick Laminated Composite Plates for Maximum Thermal Buckling Load (최대 열적 좌굴하중을 갖는 두꺼운 복합재료 적층판의 설계)

  • Lee, Young-Shin;Lee, Yeol-Wha;Yang, Myung-Seog;Park, Bock-Sun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1761-1771
    • /
    • 1993
  • In this paper, the design of thick laminated composite plate subjected to thermal buckling load under uniform temperature distribution is presented. In the design procedures of composite laminated plates for maximum thermal buckling load. the finite element method based on shear deformed theory is used for the analysis or laminated plates. One-demensional search method is used to find optimal fiber orientation and, in the next step, optimal thickness is investigated. Design variables such as fiber orientation and ply thicknesses coefficient of plates are adopted. The optimal design for the symmetric or antisymmetric laminated plates consisted of 4 layers with maximum thermal buckling load is performed.

Technical Review on Statistical Thermal Design of PWR Core (가압 경수로심의 통계적 열설계에 대한 기술 검토)

  • Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.36-46
    • /
    • 1984
  • Studied are the statistical thermal design (STD) methods that have been developed to satisfy the design basis which protects a pressurized water reactor (PWR) core against departure from nucleate boiling (DNB) during normal operations and anticipated transients. The objective of the statistical thermal design is to quantify the thermal design margin and to remove any excess conservatism from the DNB ratio calculations through statistically combining design parameter uncertainties, while still maintaining a high level of core protection. This report describes and compares the STD methods developed by the two U.S. reactor vendors (Westinghouse and B & W). Included are the characteristics of STD, statistical treatment of uncertainties, DNB design limit development methodology and the sample application of the STD technique to core thermal design analysis. It is observed that the STD methods developed by the two vendors are similiar to each other in principle, but different in the treatment of the uncertainties associated with the design parameters. The statistical thermal design is found to significantly improve the thermal design margin.

  • PDF