• Title/Summary/Keyword: thermal denaturation temperature

Search Result 46, Processing Time 0.028 seconds

Alcohol and Temperature Induced Conformational Transitions in Ervatamin B: Sequential Unfolding of Domains

  • Kundu, Suman;Sundd, Monica;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.155-164
    • /
    • 2002
  • The structural aspects of ervatamin B have been studied in different types of alcohol. This alcohol did not affect the structure or activity of ervatamin B under neutral conditions. At a low pH (3.0), different kinds of alcohol have different effects. Interestingly, at a certain concentration of non-fluorinated, aliphatic, monohydric alcohol, a conformational switch from the predominantly $\alpha$-helical to $\beta$-sheeted state is observed with a complete loss of tertiary structure and proteolytic activity. This is contrary to the observation that alcohol induces mostly the $\alpha$helical structure in proteins. The O-state of ervatamin B in 50% methanol at pH 3.0 has enhanced the stability towards GuHCl denaturation and shows a biphasic transition. This suggests the presence of two structural parts with different stabilities that unfold in steps. The thermal unfolding of ervatamin B in the O-state is also biphasic, which confirms the presence of two domains in the enzyme structure that unfold sequentially. The differential stabilization of the structural parts may also be a reflection of the differential stabilization of local conformations in methanol. Thermal unfolding of ervatamin B in the absence of alcohol is cooperative, both at neutral and low pH, and can be fitted to a two state model. However, at pH 2.0 the calorimetric profiles show two peaks, which indicates the presence of two structural domains in the enzyme with different thermal stabilities that are denatured more or less independently. With an increase in pH to 3.0 and 4.0, the shape of the DSC profiles change, and the two peaks converge to a predominant single peak. However, the ratio of van't Hoff enthalpy to calorimetric enthalpy is approximated to 2.0, indicating non-cooperativity in thermal unfolding.

Effect of Bicarbonate and Phosphate Buffer Treatments on the Structure and Thermal Stability of Spent Layer Meat (중 탄산 및 인산염 완층액 처리가 노계육의 조직구조 및 열안정성에 미치는 영향)

  • Yi, Song-Sop;Mast, Morris G.
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.695-701
    • /
    • 1991
  • Spent layer breast meat and leg meat samples washed with 0.05 M sodium bicarbonate solution and 0.04 M phosphate buffer(pH 8.3) showed decreases in heat denaturation temperature indicating the destabilization of myofibrillar proteins. The destabilization was attributed to the solubilization of 95 Kdalton and 55 kdalton proteins from the myofibrils observed in gel-electrophoretograms. Transmission electron microscopy further indicated the breakage of Z-lines.

  • PDF

FUNCTIONAL PROPERTIES CHANGE OF PIGSKIN COLLAGEN BY CHEMICAL MODIFICATION

  • Lee, M.;Kwon, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.4
    • /
    • pp.407-410
    • /
    • 1991
  • The relationship between the possible structural change due to chemical modifications and functionality changes was studied in pigskin collagen. Amino groups in collagen were modified by succinylation and reductive alkylation. Carboxyl groups were modified using carbodiimide. Thermal denaturation temperature of collagen increased remarkably by carboxyl groups modification whereas decreased by succinylation and reductive alkylation. Emulsifying capacity was improved by reductive alkylation and carboxyl groups modification while emulsion stability was improved by succinylation. Chemical modifications increased solubility whereas decreased the foaming capacity of collagen. Viscosity of collagen at various pH varied with methods of modification.

Effect of Ohmic Heating at Subgelatinization Temperatures on Thermal-property of Potato Starch (호화점 이하에서 옴가열이 감자 전분의 열적특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.1068-1074
    • /
    • 2012
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside of food when electrical current is flown into. In other study, we researched about soybean protein's characteristic changes by ohmic heating. Nevertheless treated same temperature, denaturation of soybean protein were accelerated by ohmic heating than conventional heating. In this time, we studied thermal property change of potato starch by ohmic heating besides conventional heating. For this purpose, potato starch was heated at same subgelatinization temperature by ohmic and conventional heating. And thermal properties were tested using DSC. Annealing of starch is heat treatment method that heated at 3~4% below the gelatinization point. DSC analysis results of this study, the $T_o$, $T_p$, $T_c$ of potato starch levels were increased, whereas $T_c{\sim}T_o$ was narrowed. This thermal property changes appear similar to annealing's result. It is thought the results shown in this study, because the heating from below the gelatinization point. 6, 12, 24, 72, and 120 hours heating at $55^{\circ}C$ for potato starch, $T_o$, $T_p$, $T_c$ values continue to increased with heating time increase. The gelatinization temperature of raw potato starch was $65.9^{\circ}C$ and the treated starch by conventional heating at $55^{\circ}C$ for 120 hr was $72^{\circ}C$, ohmic was $76^{\circ}C$. The gelatinization range of conventional (72 hr) was $10^{\circ}C$, ohmic was $8^{\circ}C$. In case of 24 hours heating at 45, 50, 55, 60, $65^{\circ}C$ for potato starch, the result was similar to before. $T_o$, $T_p$, $T_c$ values continue to increased and gelatinization range narrowed with heating temperature increase. In case of conventional heating at $60^{\circ}C$, the results of gelatinization temperature and range were $70.1^{\circ}C$ and $9.1^{\circ}C$. And ohmic were $74.4^{\circ}C$ and $7.5^{\circ}C$. When viewed through the results of the above, the internal structure of starch heated by ohmic heating was found that the shift to a more stable form and to increase the homology of the starch internal structure.

Characterization of Acid-soluble Collagen from Alaska Pollock Surimi Processing By-products (Refiner Discharge)

  • Park, Chan-Ho;Lee, Jae-Hyoung;Kang, Kyung-Tae;Park, Jae-W.;Kim, Jin-Soo
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.549-556
    • /
    • 2007
  • The study was carried out to examine on the refiner discharge from Alaska pollock as a collagen resource by characterizing biochemical and functional properties of collagen. The refiner discharge from Alaska pollock surimi manufacturing was a good resource for collagen extraction according to the results of total protein, heavy metal, volatile basic nitrogen, collagen content, amino acid composition, and thermal denaturation temperature (TDT). TDT of acid soluble collagen from refiner discharge showed $20.7^{\circ}C$, which was similar to that of collagen from Alaska pollock muscle and was higher than that of collagen from Alaska pollock skin. TDT of acid-soluble collagen from refiner discharge was, however, lower than those of skin collagens from warm fish and land animal. Acid-soluble collagen from refiner discharge of Alaska pollock could be used as a functional ingredient for food and industrial applications according to the results of water and oil absorption capacities, and emulsion properties. In addition, if the thermal stability of the acid-soluble collagens is improved, collagen from refiner discharge from Alaska pollock could be more effectively used.

Infrared Thermal Imaging for Quantification of HIFU-induced Tissue Coagulation (적외선 이미징 기반 HIFU 응용 조직 응고 정량화 연구)

  • Pyo, Hanjae;Park, Suhyun;Kang, Hyun Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.236-240
    • /
    • 2017
  • In this paper, we investigate the thermal response of skin tissue to high-intensity focused ultrasound (HIFU) by means of infrared (IR) thermal imaging. For skin tightening, a 7-MHz ultrasound transducer is used to induce irreversible tissue coagulation in porcine skin. An IR camera is employed to monitor spatiotemporal changes of the temperature in the tissue. The maximum temperature in the tissue increased linearly with applied energy, up to $90^{\circ}C$. The extent of irreversible tissue coagulation (up to 3.2 mm in width) corresponds well to the spatial distribution of the temperature during HIFU sonication. Histological analysis confirms that the temperature beyond the coagulation threshold (${\sim}65^{\circ}C$) delineates the margin of collagen denaturation in the tissue. IR thermal imaging can be a feasible method for quantifying the degree of thermal coagulation in HIFU-induced skin treatment.

Enzymatic hydrolysis of insoluble silk sericin by Alcalase

  • Jung, Hye-Young;Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.48-57
    • /
    • 2000
  • This study was undertaken to figure out the effects of hydrolysis conditions on the solubility of insoluble sericin, molecular weight distribution and thermal characteristics of hydrolysates in enzymatic hydrolysis by Alcalase 2.5L. It was indicated that the optimum treatment temperature and pH for the insoluble sericin were 50$\^{C}$ and 11, respectively. When the insoluble sericin was hydrolyzed with a various treatment conditions, the solubility of all hydrolysates were represented above 85% at given conditions. As the enzyme concentration increased, the solubility increased roughly, but the solubility increasement ratio was less above 2% enzyme concentration. As the treatment time increased, the solubility was also increased. It was showed in the molecular weight distribution of hydrolysates treated various enzyme concentrations and treatment times that when enzyme concentrations were 0.5, 2, 3%, the peaks of the distribution curve were shifted to left side which meant low molecular weight and was distributed much quantity with shifted to be left side, but treatment time was 6 hr. the peak was shifted to right side. When enzyme concentration was 5% and treatment time was below 2 hr., the peaks were shifted to right side, but treatment time was above 4hr. the peak was shifted to left side. The number-average molecular weights were distributed from 300 to 800 and those were decreased when treatment time was up to 4 hr., but increased a little when treatment time was 6hr. It was showed in the DSC curves of hydrolysates treated with treatment time of 0.5, 1, 2, 4, 6 hr. fixed 1% o.w.s enzyme concentration and control that the endothermic peak was observed near at 200$\^{C}$. The denaturation peak of the hydrolysates depending on treatment times had a tendency to shift to higher temperature. But, when the treatment time was 6 hr., the peak was shifted to lower temperature comparing another hydrolysates.

  • PDF

Changes in expression of monocarboxylate transporters, heat shock proteins and meat quality of Large White Yorkshire and Ghungroo pigs during hot summer period

  • Parkunan, Thulasiraman;Das, Arun K.;Banerjee, Dipak;Mohanty, Niharika;Paul, Avishek;Nanda, P.K.;Biswas, TK;Naskar, Syamal;Bag, Sadhan;Sarkar, Mihir;Mohan, Narayana H.;Das, Bikash Chandra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.246-253
    • /
    • 2017
  • Objective: Present study explores the effect of hot summer period on the glycolytic rate of early post-mortem meat quality of Ghungroo and Large White Yorkshire (LWY) pig and comparative adaptability to high temperature between above breeds by shifting the expression of stress related genes like mono-carboxylate transporters (MCTs) and heat shock proteins (HSPs). Methods: Healthy pigs of two different breeds, viz., LYW and Ghungroo (20 from each) were maintained during hot summer period (May to June) with a mean temperature of about $38^{\circ}C$. The pigs were slaughtered and meat samples from the longissimus dorsi (LD) muscles were analyzed for pH, glycogen and lactate content and mRNA expression. Following 24 h of chilling, LD muscle was also taken from the carcasses to evaluate protein solubility and different meat quality measurements. Results: LWY exhibited significantly (p<0.01) higher plasma cortisol and lactate dehydrogenase concentration than Ghungroo indicating their higher sensitivity to high temperature. LD muscle from LWY pigs revealed lower initial and ultimate pH values and higher drip loss compared to Ghungroo, indicating a faster rate of pH fall. LD muscle of Ghungroo had significantly lower lactate content at 45 min postmortem indicating normal postmortem glycolysis and much slower glycolytic rate at early postmortem. LD muscle of LWY showed rapid postmortem glycolysis, higher drip loss and higher degrees of protein denaturation. Ghungroo exhibited slightly better water holding capacity, lower cooking loss and higher protein solubility. All HSPs (HSP27, HSP70, and HSP90) and MCTs (MCT1, MCT2, and MCT4) in the LD muscle of pigs inclined to increase more in Ghungroo than LWY when exposed to high temperature. Conclusion: Effect of high temperature on the variation of HSPs and MCTs may play a crucial role in thermal tolerance and adaptation to different climatic conditions, pH regulation, muscle acidification, drip loss, protein denaturation and also in postmortem meat quality development.

Studies on the Thermal Stability and Color of Free Drip released from Pork Muscle with pH, Concentration of NaCl and Phosphate (pH, NaCl 및 phosphate 첨가에 따른 돈육 드립의 열안정성 및 색에 관한 연구)

  • Kim, Cheon-Jei;Lee, Chang-Hyun;Song, Min-Seok;Lee, Eui-Soo;Cho, Jin-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.1285-1290
    • /
    • 2000
  • The objective of this study was to evaluate the characteristics on the thermal denaturation of free drip released from pork loin during chilled storage using DSC (differential scanning calorimetry) with pH, concentration of NaCl and phosphate. The increasing of pH stabilized the heat resistance of the proteins in drip. A $T_1$ greatly increased of $T_{max}$ by $6.33^{\circ}C$ incline from pH 5.5 to 6.5. And increasing the concentration of NaCl destabilized the heat resistance of drip. $T_1$ showed the greatest reduction of $T_{max}\;(9.41^{\circ}C)$ in the presence of 5% NaCl. The presence of STPP (Sodium Tripolyphosphate) enchanced the thermal stability of pork drip by $5.84^{\circ}C$ in the presence of 0.5% STPP. As temperature increased from 40 to $100^{\circ}C$, lightness $(L^*)$ increased from 41.1 to 69.5, while redness $(a^*)$ decreased from 26.70 to 5.40. Particularly, both values of $L^*-$ and $a^*-$ greatly changed by 78% from 40 to $60^{\circ}C$.

  • PDF

Application of Temperature Gradient Gel Electrophoresis To cAMP Receptor Protein (온도 기울기 전기영동장치의 CAMP 수용성 단백질에 응용)

  • Gang, Jong-Back;Cho, Hyun-Young
    • Journal of Life Science
    • /
    • v.14 no.2
    • /
    • pp.309-314
    • /
    • 2004
  • Cyclic AMP receptor protein (CRP) is involved in the transcriptional regulation of more than 100 genes in E. coli. CRP dimer is converted into active form via the sequential conformation change of cAMP binding pocket, hinge region and HTH DNA binding motif by binding of cAMP. The temperature gradient gel electrophoresis (TGGE) was applied to CRP protein to know whether it was an efficient technique to study the conformational transitions and the thermal stability. TGGE showed the unfolding process of wild-type and S83G CRP proteins with the temperature gradient set from 29 to 71$^{\circ}C$ on nondenaturing polyacrylamide gel. Melting temperature (Tm) was 57$\pm$1 and 55$\pm$1$^{\circ}C$ for wild-type and S83G CRP, respectively in acidic buffer[89.8 mM Glycine and 24 mM Boric acid (pH 5.8)].