• Title/Summary/Keyword: thermal decomposition of H$_2$S.

Search Result 55, Processing Time 0.026 seconds

Removal of Mixed Odor(H$_2$S/CH$_3$SH) using Char Adsorbent Made from Sewage Sludge (하수슬러지 탄화물 흡착제를 이용한 혼합 악취(H$_2$S/CH$_3$SH)의 제거)

  • Han, Young-Suk;Choi, Won-Joon;Kim, Taek-Joon;Kim, Im-Gyung;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1132-1138
    • /
    • 2008
  • The study was carried out to investigate adsorption characteristic on hydrogen sulfide (H$_2$S) and methylmercaptan (CH$_3$SH) odor gas using the char made by a thermal decomposition of sewage sludge. The fixed bed adsorption experiments of the optimum L/D ratio could be 1.0, and adsorption capacity and break point increased with the increase of temperature. A simultaneous adsorption characteristic of H$_2$S and CH$_3$SH increased in breakthrough time and adsorption capacity more than single adsorption experiment, and CH$_3$SH had higher effective diffusivities than H$_2$S in same condition. The adsorption capacity of CH$_3$SH increased with fast velocity. When it was compared the produced absorbent with commercial activated carbon, As to adsorbent amount, it was H$_2$S 77% and CH$_3$SH 80% of commercial activated carbon.

Synthesis, Characterization, and Thermal Degradation of Oligo-2-[(pyridin-4-yl-)methyleneamino]pyridine-3-ol and Oligomer-Metal Complexes (올리고피리디닐메틸렌아미노피리딘올과 금속 착화물의 합성, 분석 및 열분해 특성 연구)

  • Kaya, Ismet;Gul, Murat
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2008
  • This study examined the oxidative polycondensation reaction of 2-[(pyridin-4-yl-) methyleneamino] pyridine-3-ol (2-PMAP) using air $O_2$ and NaOCl oxidants at various temperatures and times in aqueous alkaline and acidic media. Under these reactions, the optimum reaction conditions using air $O_2$ and NaOCl oxidants were determined for 2-PMAP. The number-average molecular weight ($M_n$), weight average molecular weight ($M_w$), and polydispersity index (PDI) values of O-2-PMAP synthesized in aqueous alkaline media were found to be 960, 1230, and $1.281\;g\;mol^{-1}$ using NaOCl, and 1030, 1520, and $1.476\;g\;mol^{-1}$ using air $O_2$, respectively. At the optimum reaction conditions, the yield of O-2-PMAP in aqueous alkaline media was 92.50% and 85.70% for air $O_2$ and NaOCl oxidants, respectively. The yield of O-2-PMAP in aqueous acidic media was 88.5% and 88.0% for NaOCl and air $O_2$ oxidants, respectively. O-2-PMAP was characterized by $^1H-$, $^{13}C$-NMR, FT-IR, UV-vis, SEC, and elemental analysis. TGA-DTA analysis revealed O-2-PMAP and its oligomer metal complex compounds, such as $Co^{+2}$, $Ni^{+2}$, and $Cu^{+2}$, to be stable against thermal decomposition and their weight losses at $1000^{\circ}C$ were found to be 73.0, 58.0, 53.5%, and 50.0%, respectively. In addition, the antimicrobial activities of the monomer and oligomer were tested against E. Coli (ATCC 25922), E. Faecelis (ATCC 29212), P. Auroginasa (ATCC 27853), and S. Aureus (ATCC 25923).

Chemical Compositions and Thermal Characteristics of Rice Husk and Rice Husk Ash in Korea (왕겨 및 왕겨재의 화학적 조성 성분과 열적 특성)

  • Park S. J.;Kim M. H.;Shin H. M.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.235-241
    • /
    • 2005
  • For better and large utilization of rice husk, the production and consumption status, differences in chemical composition and heating value due to region and variety, and thermogravimetric characteristic of rice husk were studied. In addition, the differences in chemical composition due to region and variety and the crystallization characteristic of rice husk ash were also studied. Approximately 800,000 M/T of rice husk was produced per year in Korea, which is about $18\%$ of the paddy production by weight. Noticeable varietal and regional difference pattern in chemical composition was not found among the domestic rice husk samples. Their average ash content and higher heating value were $16.4\%$ and 16,660 kJ/kg by dry basis, respectively. A relation seemed to exist between the carbon content and higher heating value. Noticeable difference pattern in chemical composition was not found among the domestic rice husk ash samples. The $SiO_2$ contents were a little low, the maximum being $92.9\%,$ and the contents of major components such as CaO, MgO, and $K_2O$ were also lower compared with foreign rice husk ash due to the deficiency of compost matters in domestic soils. Thermogravimetry study showed the thermal decomposition of rice husk started at about $250^{\circ}C,$ followed by relatively fast combustion of combustible gas until the temperature rose to $350^{\circ}C.$ After $350^{\circ}C,$ combustion of the carbon component proceeded relatively slowly as the temperature increased. Therefore, the ignition temperature of the rice husk could be estimated around $300^{\circ}C$. Crystallization of $SiO_2$ in the rice husk ash was found from the combustion temperature of $750^{\circ}C$ and became distinctly when the combustion temperature exceeded $900^{\circ}C$. The ash became darker with $SiO_2$ crystallization.

Preparation and Characterization of Cellulose Nano-Whiskers Extracted from Microcrystalline Cellulose by Acid Hydrolysis (산 가수분해를 이용하여 microcrystalline cellulose로부터 추출 된 cellulose nano-whisker의 특성분석)

  • Jeong, Hae-Deuk;Yoon, Chang-Rok;Lee, Jong-Hyeok;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • Cellulose nanowhiskers (CNW) gamered increasing interest for their remarkable reinforcement of polymer composites. In this work, we were to produce cellulose whiskers from commercially available microcrystalline cellulose (MCC) by acid hydrolysis with sulfuric and hydrochloric acids. Electron microscopy found that each acid produced sililar cellulose crystals of diameters ranging from 20 to 30 nm and lengths ranging from 200 to 300 nm. Moreover, all samples showed remarkable flow birefringence through crossed polarization filters. Conductometric titration of CNW suspensions revealed that the sulfuric acid treated sample had a surface charge of between 140.00 mmol/kg and 197.78 mmol/kg due to sulfate groups, while that of the hydrochloric acid treated sample was undetectable. Thermogravimetric analysis showed that the thermal decomposition temperature and apparent activation energy (evaluated by Broido's method at different stages of thermal decomposition.) of H1-CNW - prepared by hydrolysis with hydrochloric acid - was higher than those of S1-CNW and S2-CNW - prepared by hydrolyzing MCC with sulfuric acid.

Changes in chemical properties, antioxidant activities, and cytotoxicity of turmeric pigments by thermal process (가열처리에 의한 심황색소의 화학적 특성, 산화방지 활성 및 세포독성 변화)

  • Song, Eiseul;Kang, Smee;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • Turmeric oleoresin, extracted from the rhizome of Curcuma longa L., is a widely-used natural food colorant. Curcuminoids, the major pigments in turmeric, which include curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BMC), possess various physiological activities. In the present study, changes in the chemical properties, antioxidant activities, and cytotoxicity of turmeric pigments upon heating were investigated. Color intensity of turmeric was significantly reduced after heating. Residual levels of curcumin, DMC, and BMC after 15 min of heating at $95^{\circ}C$ were 11.9, 37.4, and 77.3% respectively. Scavenging activities of turmeric against 2,2'-azobis-3-ethyl-benz-thiazoline-6-sulfonic acid (ABTS), 2,2-azobis (2-amidinopropane) hydrochloride (AAPH) peroxyl radicals, and nitrite were significantly enhanced after heating, while 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity remained unaffected. Generation of $H_2O_2$ from turmeric was increased via thermal decomposition. Cytotoxicity of turmeric pigments against colon cancer and normal intestinal cells was reduced significantly after heating. The results indicate that thermal processing affects chemical properties and bioactivities of turmeric pigments. These effects should be considered during the processing of foods containing turmeric pigments.

Synthetic, Characterization, Biological, Electrical and Catalytic Studies of Some Transition Metal Complexes of Unsymmetrical Quadridentate Schiff Base Ligand

  • Maldhure, A. K.;Pethe, G. B.;Yaul, A. R.;Aswar, A. S.
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.215-224
    • /
    • 2015
  • Unsymmetrical tetradentate Schiff base N-(2-hydroxy-5-methylacetophenone)-N'-(2-hydroxy acetophenone) ethylene diamine (H2L) and its complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, IR, electronic spectra and thermogravimetric analyses. 1H, 13C-NMR and FAB Mass spectra of ligand clearly indicate the presence of OH and azomethine groups. Elemental analyses of the complexes indicate that the metal to ligand ratio is 1:1 in all complexes. Infrared spectra of complexes indicate a dibasic quadridentate nature of the ligand and its coordination to metal ions through phenolic oxygen and azomethine nitrogen atoms. The thermal behavior of these complexes showed the loss of lattice water in the first step followed by decomposition of the ligand in subsequent steps. The thermal data have also been analyzed for the kinetic parameters by using Horowitz-Metzger method. The dependence of the electrical conductivity on the temperature has been studied over the temperature range 313-403 K and the complexes are found to show semiconducting behavior. XRD and SEM images of some representative complexes have been recorded. The antimicrobial activity of the ligand and its complexes has been screened against various microorganisms and all of them were found to be active against the test organisms. The Fe(III) and Ni(II) complex have been tested for the catalytic oxidation of styrene.

Effect of Nucleation and Growth Dynamics on Saturation Magnetization of Chemically Synthesized Fe Nanoparticles

  • Ogawa, T.;Seto, K.;Hasegawa, D.;Yang, H.T.;Kura, H.;Doi, M.;Takahashi, M.
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.308-311
    • /
    • 2011
  • In order to obtain mono-dispersed Fe NPs with high saturation magnetization, quantitative analysis method to investigate the growth dynamics of the Fe NPs synthesized by a conventional thermal decomposition method has been developed. As a result, fast nucleation process promotes formation of ~4 nm of initial nucleus with a non-equilibrium phase, resulting in low saturation magnetization. And slow particle growth with atomic-scaled surface precipitation mode (< 100 atoms/($min{\cdot}nm^2$)) can form the growth layer on the surface of initial nucleus with high saturation magnetization (~190 emu/$g_{Fe}$) as an equilibrium a phase of Fe. Therefore, higher stabilization of small initial nucleus generated just after the injection of $Fe(CO)_5$ should be one of the key issues to achieve much higher $M_s$ of Fe NPs.

Study on Explosion Behavior of Air-born Rice Bran Dusts according to Ignition Energy (점화에너지 변화에 따른 쌀겨분진의 폭발 거동에 관한 연구)

  • 김정환;김현우;현성호;백동현
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-32
    • /
    • 1999
  • We had investigated combustion pro야$\pi$ies of rice bran dusts. Decomposition of rice bran d dusts with temperature were investigated using DSC and the weight loss according to t temperature using TGA in order to find the thermal hazard of rice bran dusts, and the p properties of dust explosion in variation of their dust with the same particle size. Using H Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after m making dust disperse by compressed air, dust explosion experiments have been conducted by v varying concen$\sigma$ation and size of rice br뻐 dust. According to the results for thermodynamic stability of rice bran dust, there are little change of initiation temperature of heat generation 때d heating value for used particle size. But i initiation temperature of heat generation decreased with high heating rate whereas d decomposition heat increased with particle size. Also, the explosion pressure was increased as t the ignition energy increased and average maximum explosion pressure was 13.5 kgv'cnt for 5 BJ/60 mesh and 1.5 뼈Ie미 dust concentration.

  • PDF

REACTION STEPS OF A FORMATION OF THE BLACK LAYER BEIWEEN IRON NTIRIDE AND TiN COATING

  • Baek, W.S.;Kwon, S.C.;Lee, J.Y.;Rha, J.J.;Lee, S.R.;Kim, K.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.312-316
    • /
    • 1999
  • The interfacial structure of duplex treated AISI 4140 consisting of iron nitride and TiN layer was characterized by optical microscope, SEM and XRD. A black layer was formed from the decomposition of iron nitride during Ti ion bombardment. The black layer was characterized as an a-Fe phase transformed from the iron nitride by XRD. In order to identify the formation mechanism of the black layer, a thermal analysis of iron nitride undertaken by DSC method. As an iron nitride was mostly consisted of ${\gamma}$'-Fe$_4$N and $\varepsilon$-$Fe_3$N phase after plasma nitriding, in this study, a ${\gamma}$'$-Fe_4$N and $\varepsilon$-$Fe_3$N powders were separately prepared by the different processing conditions of gas nitriding of iron powder in the fluidized bed. From the DSC thermal analysis, the phase transformation of ${\gamma}$'$-Fe_4$N, $\varepsilon$-$Fe_3$N was followed the path of transformation; $ \Upsilon{'}-Fe_4$Nlongrightarrow${\gamma}$-Felongrightarrowa-Fe and of $\varepsilon$-$Fe_3$Nlongrightarrow$\varepsilon$-$Fe_{2.5}$ /N+${\gamma}$'$-Fe_4$Nlongrightarrow${\gamma}$'-Fe$_4$Nlongrightarrow${\gamma}$longrightarrowFelongrightarrowalongrightarrowFe, respectively. It explains the reason why the $\varepsilon$ $-Fe_3$N phase disappeared in the first time and then ${\gamma}$'-Fe$_4$N in the formation of the black layer in the duplex coating.

  • PDF

Preparation and Characteristics of Li/$V_6O_{13}$ Secondary Battery (Li/$V_6O_{13}$ 2차전지의 제조 및 특성)

  • Moon, S.I.;Jeong, E.D.;Doh, C.H.;Yun, M.S.;Yum, D.H.;Chung, M.Y.;Park, C.J.;Youn, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.136-140
    • /
    • 1992
  • The purpose of this research is to develop the lithium secondary battery. This paper describes the preparation, electrochemical properties of nontstoichiometric(NS)-$V_6O_{13}$ and characteristics of Li/$V_6O_{13}$ secondary battery. NS-$V_6O_{13}$ was prepared by thermal decomposition of $NH_4VO_3$ under Ar stream of 140ml/min~180ml/min flow rate. And then, this NS-$V_6O_{13}$ was used for cathode active material. Cathode sheet was prepared by compressing the composite of NS-$V_6O_{13}$, acetylene black(A.B) and teflon emulsion (T.E). Characteristics of the test cell are summarised as follows. Oxidation capacity of NS-$V_6O_{13}$ was about 20% less than its reduction capacity. A part of NS-$V_6O_{13}$ cathode active material showed irreversible reaction in early charge-discharge cycle. This phenomena seems to be caused by irreversible incoporation/discoporation of lithium cation to/from NS-$V_6O_{13}$ host. Discharge characteristics curve of Li/$V_6O_{13}$ cell showed 4 potential plateaus. Charge-discharge capacity was declined in the beginning of cycling and slowly increased in company with increasing of coulombic efficiency. Energy density per weight of $V_6O_{13}$ cathode material was as high as 522Wh/kg~765Wh/kg.

  • PDF