• Title/Summary/Keyword: thermal cyclization reaction

Search Result 17, Processing Time 0.021 seconds

Synthesis and properties of PBO precursors having bulky groups and ether linkages in the main chain (주사슬에 벌키그룹과 에테르 연결고리를 갖는 PBO 전구체의 합성 및 특성)

  • Yoon, Doo-Soo;Kim, Hee-Sun;Choi, Jae-Kon;Hong, Wan-Hae
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.271-280
    • /
    • 2008
  • Aromatic polyhydroxyamides (PHAs) having bulky groups and ether linkages in the polymer main chain were synthesized by the low temperature solution polycondensation reaction. FT-IR, $^{1}H-NMR$, DSC, and TGA were used to study the properties of these polymers. The PHAs were converted into polybenzoxazoles (PBOs) by a thermal cyclization reaction, and endothermic peaks were observed in the range of $220{\sim}400^{\circ}C$. The introduction of the ether and bulky groups in the main chain improved the solubility of the PHAs in aprotic solvents such as DMSO and DMF, but the PBOs were nearly insoluble in common solvents. All the PBOs, except for PBO 5 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring, and PBO 6 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring, exhibited $T_g's$ in the range from 149 to $217^{\circ}C$ by DSC. The thermogravimetric analyses indicated that most of the PBOs were thermally stable up to $400^{\circ}C$ in nitrogen. Maximum weight loss temperatures of PHA 5 and PBO 5 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring were $707^{\circ}C$ and $683^{\circ}C$, respectively, which were the hightest temperatures among the corresponding copolymers. The PBOs in nitrogen exhibited relatively high char yields in the range of $63{\sim}70%$ at $900^{\circ}C$.

Preparation and Properties of PAA/PHA/Organoclay Nanocomposite (PAA/PHA/Organoclay 나노복합재료의 제조 및 특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.326-332
    • /
    • 2010
  • Nanocomposite films were prepared by blending poly(amic acid)(PAA), poly(o-hydroxyamide)( PHA) and organically modified montmorillonite (OMMT) that has a layered structure. XRD, SEM and TEM were used to study the morphology of PAA/PHA nanocomposites, and DMA, TGA, UTM, LOI and PCFC techniques were used to characterize the mechanical and thermal properties, and flame retardancy of the nanocomposites. TEM images revealed that OMMT layers were well dispersed in the PAA/PHA matrix and showed exfoliation and intercalation behavior. The addition of 3 wt% OMMT to the PAA/PHA blend increased the initial modulus of PAA/ PHA blend to 3.68 GPa that was ca. 48% higher than that of the control PAA/PHA blend. Above 4 wt%, however, both the initial modulus and the tensile strength were found to decrease, which might be due to the aggregation of OMMT in PAA/PHA matrix. When the OMMT content was below 3 wt%, the thermal stability and flame retardancy of the PAA/PHA nanocomposites increased with increasing OMMT content.

Production of ${\beta}-Cyclodextrin$ from Starch by Cyclodextrin Glycosyltransferase from Alkalophilic Bacillus sp. (호알카리성 Bacillus sp. 유래의 Cyclodextrin Glycosyltransferase에 의한 ${\beta}-Cyclodextrin$의 생산)

  • Kim, Kee-Hong;Lim, Hyung-Guen;Seo, Jin-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.608-613
    • /
    • 1993
  • Production of cyclodextrin (CD) by cyclodextrin glycosyltransferase (CGTase) isolated from alkalophilic Bacillus sp. was carried out to determine optimal reaction conditions. The maximum initial rate of CD production from amylose was obtained at dextrose equivalent 10.5. The CD production yield showed inverse proportionality to DE values over the range from 0.5 to 37.7. Even though the deactivation constant of CGTase at $60^{\circ}C$ was higher than those at lower temperatures, the production rate and yield at $60^{\circ}C$ were still higher. These results suggest thermal stabilization of CGTase by binding with starch.

  • PDF

Synthesis and Properties of Polybenzoxazole Precursors having Oligo(oxy ethylene) pendant (Oligo(oxy ethylene) pendant를 갖는 PBO 전구체의 합성 및 특성)

  • Lee, Eung-Jae;Yoon, Doo-Soo;Bang, Moon-Soo;Choi, Jae-Kon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2550-2558
    • /
    • 2013
  • Poly(o-hydroxyamides)(PHAs) copolymers having oligo(oxy ethylene) pendant in the main chain were synthesized by solution polycondensation reaction at low temperature. Copolymer precursors were studied by fourier transform infrared(FT-IR), differential scanning calorimeter(DSC), thermogravimetric analyzer(TGA), universal testing machine(UTM) and limited oxygen index(LOI). The inherent viscosities of the PHAs measured at $35^{\circ}C$ in DMAc or DMAc/LiCl solution were in the range of 0.74~1.42 dL/g. Solubility of the precursors with higher oligo(oxy ethylene) unit was increased, but the PBOs were nearly insoluble in a variety of solvents. The degradation temperature of the copolymer precursors was recorded in the ranges of $408{\sim}664^{\circ}C$ in nitrogen and char yields showed 13~59% values at $900^{\circ}C$. The mechanical properties and flame retardancy of copolymer precursors decreased with higher oligo(oxy ethylene) unit.

Preparation of the Blends of Poly(amic acid) and PBO Precursor and Their Properties (Poly(amic acid)와 PBO 전구체의 블렌드 제조 및 특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.77-84
    • /
    • 2008
  • The thermal properties, morphology, mechanical properties and gas permeability of the blends of poly (amic acid) (PAA) and poly (o-hydroxyamides) (PHAs) having pendant group was investigated. The 5% weight loss and major weight loss of the b)ends occurred in the ranges of $348{\sim}407^{\circ}C$ and $589{\sim}615^{\circ}C$ upon a heating process. After a thermical annealing, the tensile strength and initial modulus of blends increased $3.7{\sim}52.9%$ and $34.4{\sim}70%$ from the value of pure PAA, respectively. Especially the tensile strength and modulus of the PAA/MP-PHA=9/1 showed the highest values (97.5 MPa and 2.67 GPa, respectively), which were 53 and 70% higher than those of pure PAA. The fine PHA domains were found to be uniformly dispersed. The interfacial adhesion between PAA and PHA was identified to be good. The gas permeabilities of PAA/M-PHA blend increased with M-PHA contents.

Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain (주사슬에 곁사슬기를 갖는 폴리히드록시아미드의 물성 및 난연특성)

  • Yoon, Doo-Soo;Choi, Jae-Kon;Jo, Byung-Wook
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.478-485
    • /
    • 2006
  • Physical properties and flammability of polyhydroxyamides (PHAs) haying poly (ethylene-glycol) methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter (PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of $276{\sim}396^{\circ}C$ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with in-creasing molecular weight of MPEG. In case of M-PHA 2 annealed at $290^{\circ}C$, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to $856^{\circ}C$ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of $129.3{\sim}235.1kJ/mol$, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.

Synthesis and Thermal Properties of Aromatic Poly(o-hydroxyamide)s Containing Phenylene Diimide Unit (Phenylene Diimide 단위를 포함한 방향족 Poly(o-hydroxyamide)s의 합성 및 열적 특성)

  • Lee, Eung-Jae;Yoon, Doo-Soo;Choi, Jae-Kon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.6029-6038
    • /
    • 2013
  • In this study we attempt to modify the backbone structure and improve processibility of PBO having high melting and glass transition temperature. A series of aromatic poly(o-hydroxyamide)s(PHAs) were synthesized by direct polycondensaton of diacides containing diimide unit with two types of bis(o-aminophenol)s including 3,3'-dihydroxybenzidine and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. PHAs were studied by FT-IR, $^1H$-NMR, DSC and TGA. PHAs exhibited inherent viscosities in the range of 0.34~0.65 dL/g at $35^{\circ}C$ in DMAc solution. The PHA 1 and 6F-PHA 6, introducing o-phenylene unit in the main chain showed excellent solubilities in aprotic solvents such as NMP etc. However, the PHA 3, having p-phenylene unit was not even dissolved perfectly with LiCl salt. 6F-PHAs were readily soluble at room temperature in aprotic solvents except 6F-PHA 3. But they showed better solubility than that of PHAs. The polybenzoxazoles(PBOs) were quite insoluble in other solvents except partially soluble in sulfuric acid. PBOs exhibited relatively high glass transition temperatures(Tg) in the range of 306~$311^{\circ}C$ by DSC. The maximum weight loss temperature and char yields of PHA3 and 6F-PHA3 showed the highest values of $658^{\circ}C$ and $653^{\circ}C$, 62.6 % and 62.1 %, respectively.