• 제목/요약/키워드: thermal cracks

검색결과 444건 처리시간 0.025초

가속화 시험을 통한 플립칩 패키지의 열적 기계적 특성 평가 (Thermo-mechanical reliability evaluation of flip chip package using a accelerated test)

  • 김대곤;하상수;김종웅;신영의;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.21-23
    • /
    • 2006
  • The microstructural investigation and thermo-mechanical reliability evaluation of the Sn-3.0Ag-0.5Cu solder bumped flip chip package were carried out during the thermal shock test of the package. In the initial reaction, the reaction product between the solder and Cu mini bump of chip side was Cu6Sn5 layer, while the two phases which were (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 were formed between the solder and Ni-P layer of the package side. The cracks were occurred at the corner solder joints after the thermal shocks of 400 cycles. The primary failure mechanism of the solder joints in this type of package was confirmed to be thermally activated solder fatigue failure.

  • PDF

Copper thickness and thermal reliability of microvias produced by laser-assisted seeding (LAS) process in printed circuit board (PCB) manufacture

  • Leung, E. S.W.;Yung, W. K.C.
    • International Journal of Quality Innovation
    • /
    • 제2권2호
    • /
    • pp.69-92
    • /
    • 2001
  • The laser-assisted seeding (LAS) process has potential to replace conventional electroless copper plating in Printed Circuit Board (PCB) manufacturing since it combines the steps of laser drilling and plating into one single process. In the LAS process, the single extra LAS step can metallize a microvia. Thus, the process steps can be greatly reduced and the productivity enhanced, but also the high aspect ratio microvias can be metallized. The objectives of this paper are to study the LAS copper thickness within PCB microvias and the thermal reliability of the microvias produced by this process. It was found that results were satisfactory in both the reliability test and also the LAS copper thickness which both comply with IPC standard, the copper thickness produced by the LAS process is sufficient for subsequent electro-plating process. The reliability of the microvias produced by LAS process is acceptable which are free from any voids, corner cracks, and distortion in the plated copper.

  • PDF

무연 Sn-Ag-Bi-Ga계 솔더의 특성에 관한 연구 (A Study on the Characteristic of Pb-free Sn-Ag-Bi-Ga Solder Alloys)

  • 노보인;이보영
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.42-47
    • /
    • 2000
  • The object of this study is to estimate Sn-Ag-Bi-Ga solder alloy as a substitute for Sn-37Pb alloy. For Sn-Ag-Bi-Ga alloys, Ag, Bi and Ga contents are varied. (Ag : 1~5%, Ga : 3%, Bi : 3~6%) Comparing to Sn-37Pb alloy Sn-Ag-Bi-Ga alloys have wider melting temperature range up to max. $18.7^{\circ}C$. With increasing Ag, Bi contents, the wettability of the alloys increased up to max. 6.6 mN. The vickers hardness of the alloys was max. 46.4 Hv. The ultimate tensile stress of the alloys was max. 60.3 MPa and the elongation was max. 1.2%. The joint strength between circuit board and solder was max. 55.5 N and the joint strength between connector and solder was max. 176.1 N. There were no cracks in this alloys after thermal shock test.

  • PDF

CaO-MgO-$SiO_2$ 계 LTCC glass에 대한 특성 연구 (Study on properties of CaO-MgO-$SiO_2$ system glass-ceramic for LTCC)

  • 장명훈;마원철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.322-322
    • /
    • 2008
  • Low-temperature co-fired ceramics (LTCC) have turned out to be very promising technology in accordance with the rapid developments in semiconductor technology. The demands for compact electrical assemblies, smaller power loss as well as high signal density can be fulfilled by LTCC. And for the multi-layered ceramic devices with embedded passive components such as high dielectric constant decoupling capacitor, LTCC materials require the several conditions to avoid delamination and internal cracks. For the present study, diopside-based glass is chosen as the LTCC substrate material in view of its high coefficient of thermal expansion (CTE). From the experimental resultsn the influence of each element on the CTE change can be revealed.

  • PDF

열전달 시뮬레이션을 통한 최적공극탐지 차트개발 (Development of an Optimum Void Detection Chart using Heat Transfer Simulation)

  • 최현호;박진형;지광습
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.241-244
    • /
    • 2006
  • It is essential to develop a large capacity, non-contact nondestructive inspection system having high reliability to investigate repaired and strengthened structures. Nowadays, an infrared camera is widely used in non-contact nondestructive inspection system. Because an infrared camera is sensitive to the surrounding environment, it is necessary to improve a sensitivity of thermal image information and a relationship between defects and thermal image information. In this papaer, presented is an optimum void detection chart for the optimum conditions to detect infrared rays from inside and outside defects like voids and cracks in concrete structures using extensive computer simulation. Sensitivity studies are performed with respect to variables influencing the temperature distribution such as heating temperature, heating time, and geometries of defect, etc. It may be stated that it could be successfully utilized for the non-contact nondestructive inspection system to detect defects in concrete structures.

  • PDF

다중 응력 변화에 따른 에폭시 복합체의 내크랙성 및 절연 파괴 특성 (The Crack Resistance and the Dielectric Breakdown properties of Epoxy Composities due to the Multi Stresses Variation)

  • 송봉철;김상걸;안준호;김충혁;이준웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.136-139
    • /
    • 2000
  • Epoxy materials are used as insulation material for electric power cables. In the case of a flow of excess current due to the temperature difference which occurs between the heat of the conductor and the atmosphere, heat degrades connection point of the cables. Also, the mechanical stress, which occurs due to the thermal expansion coefficient of cable connection electrode system and epoxy insulation materials along with the gap between thermal conduction based on the extra high voltage of transmitted voltage, increases possibility of cracks to occur. The relationship between mechanical stress and electrical breakdown mechanism is verified for the epoxy materials such as high toughness epoxy materials, which comes to be used contemporarily, and for the breakdown mechanism of epoxy materials on the multi-stresses (mechanical and electrical) due to the variation of the temperature.

  • PDF

Classification of ultrasonic signals of thermally aged cast austenitic stainless steel (CASS) using machine learning (ML) models

  • Kim, Jin-Gyum;Jang, Changheui;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1167-1174
    • /
    • 2022
  • Cast austenitic stainless steels (CASSs) are widely used as structural materials in the nuclear industry. The main drawback of CASSs is the reduction in fracture toughness due to long-term exposure to operating environment. Even though ultrasonic non-destructive testing has been conducted in major nuclear components and pipes, the detection of cracks is difficult due to the scattering and attenuation of ultrasonic waves by the coarse grains and the inhomogeneity of CASS materials. In this study, the ultrasonic signals measured in thermally aged CASS were discriminated for the first time with the simple ultrasonic technique (UT) and machine learning (ML) models. Several different ML models, specifically the K-nearest neighbors (KNN), Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP) models, were used to classify the ultrasonic signals as thermal aging condition of CASS specimens. We identified that the ML models can predict the category of ultrasonic signals effectively according to the aging condition.

The Coating Performance of UV Curable Urethane Acrylate Coatings for Fancy Veneer Overlayed Plywood Flooring

  • Lee, Byoung-Hoo;Kim, Hyun-Joong;Lee, Young-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권6호
    • /
    • pp.23-35
    • /
    • 2004
  • The goal of study was to investigate the influence of the acrylated urethane oligomer on mechanical properties, the chemical resistance and thermal resistance of the UV curable urethane acrylate coatings for fancy veneer overlayed plywood flooring. The pencil hardness and abrasion resistance of the coated fancy veneer overlayed plywood floorings increased with increasing the acrylate functionality of the acrylated urethane oligomer. In the case of the UV cured film containing hexa-functional acrylated aliphatic urethane oligomer, high discoloration of the coated fancy veneer overlayed plywood flooring was observed near the cracks at the beginning of the chemical treatment. In this study, it was found that the degradation of the UV cured film caused by an alkaline reagent was higher than that of the UV cured film caused by an acidic treatment.

광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성 (Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin)

  • 심지현;김지혜;박성민;구광회;장기욱;배진석
    • 한국염색가공학회지
    • /
    • 제29권1호
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.

Analysis of Thermal Characteristics and Insulation Resistance Based on the Installation Year and Accelerated Test by Electrical Socket Outlets

  • Kim, Kyung Chun;Kim, Doo Hyun;Kim, Sung Chul;Kim, Jae Ho
    • Safety and Health at Work
    • /
    • 제11권4호
    • /
    • pp.405-417
    • /
    • 2020
  • Background: Electrical socket outlets are used continuously until a failure occurs because they have no indication of manufacturing date or exchange specifications. For this reason, 659 electrical fires related to electrical socket outlets broke out in the Republic of Korea at 2018 only, an increase year on year. To reduce electrical fires from electrical socket outlets, it is necessary to perform an accelerated test and analyze the thermal, insulation resistance, and material properties of electrical socket outlets by installation years. Methods: Thermal characteristics were investigated by measured the temperature increase of electrical socket outlets classified according to year with variation of the current level. Insulation resistance characteristics was measured according to temperature for an electrical socket outlets by their years of use. Finally, to investigate the thermal and insulation resistance characteristics in relation to outlet aging, this study analyzed electrical socket outlets' conductor surface and content, insulator weight, and thermal deformation temperature. Results: Analysis showed, regarding the thermal characteristics, that electrical socket outlet temperature rose when the current value increased. Moreover, the longer the time that had elapsed since an accelerated test and installation, the higher the electrical socket outlet temperature was. With respect to the insulation resistance properties, the accelerated test (30 years) showed that insulation resistance decreased from 110 ℃. In relation to the installation year (30 years), insulation resistance decreased from 70 ℃, which is as much as 40 ℃ lower than the result found by the accelerated test. Regarding the material properties, the longer the elapsed time since installation, the rougher the surface of conductor contact point was, and cracks increased. Conclusion: The 30-year-old electrical socket outlet exceeded the allowable temperature which is 65 ℃ of the electrical contacts at 10 A, and the insulation resistance began to decrease at 70 ℃. It is necessary to manage electrical socket outlets that have been installed for a long time.