• Title/Summary/Keyword: thermal cracks

Search Result 443, Processing Time 0.039 seconds

Failure Analysis of the Rate of Rise Spot Type Heat Detector on Artificially Accelerated Aging (인공 가속열화에 따른 차동식 스포트형 열감지기의 고장 원인분석)

  • Kim, Chan-Young
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.48-55
    • /
    • 2011
  • This paper presents the failure analysis of the rate of rise spot type heat detectors on artificially accelerated aging. The failures of heat detector turned out by two reasons. The first one is the separation of binder from plastic moulding, resulting in the leakage of air from heat chamber. The second reason is the crack of plastic. The large cracks were maybe created by these reasons, thermal expansion difference, mechanical stress, or growth of microcrack. In the sound detector, the separation and the crack were not occurred or not developed to the critical size. The glass fibers which increase the mechanical strength were added in the binder of detector 2010G. The densities of binder or plastic of each detector were similar. However, the TGA result shows that the thermal characteristics of 2005A and 2005B were not similar.

Effects of Spraying Conditions on the Porosity and Hardness of Plasma Sprayed MgO Stabilized Zirconic Thermal Barrier Coatings (Plasma 용사된 MgO 안정화 지르코니아 단열피복의 기공도와 경도에 미치는 용사조건의 영향)

  • Park, Yeong-Gyu;Choe, Guk-Seon;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • The size, morphology and distribution of pores which affect on the physical properties of thermal barrier coatings were investigated to find the relationship with spraying parameters. The plasma-sprayed zirconia coatings contained numerous micropores as well as macropores which were appeared as spherical and irregular pores, and cracks. The pore formation process and its characteristics were varied with spraying distance. Porosity itself was varied with spraying parameters such as spray gun current, gas flow rate and the gas used(Ar or $N_2). The Porosity of coatings was ranged from 10 to 18% with the variation of spraying conditions. The relative hardness measured by the scratch test, showed strong dependence on the porosity of coatings rather than spraying parameters.

  • PDF

A study on the mechanical behavior of the optical fiber sensors embedded in the composite laminate (복합재료 적층판에 삽입된 광섬유 센서의 기계적 특성에 관한 연구)

  • Shin, Kum-Cheol;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.440-447
    • /
    • 1999
  • Tensile stress loaded on smart composite structures and thermal stress occurred during the during process of the smart composite materials with embedded optical fiber sensors affect directly the mechanical behavior of the embedded optical fiber sensors within the smart composite structures. Stress distribution within the optical fiber sensors varies with respect to the stacking sequence of the composite laminate and the coating conditions of the optical fibers. The cracks occurred within the composite laminate affect not only the fracture of the composite laminate but also the fracture of the optical fiber sensors embedded within the composite laminate. In this study, firstly, stress distribution of the optical fiber sensors embedded within the composite laminate which is subjected to the tensile and thermal stresses was analyzed using Finite Element Method. And, secondly, the effect of the stacking sequence of the composite laminate and the coating conditions of the optical fiber sensors on the stress distribution of the optical fiber sensors was investigated. Finally, the effect of the crack occurred within the smart composite laminate on the fracture behavior of the optical fiber sensors was also observed through the tensile test.

  • PDF

Control of Thermal Crack in Mass Concrete Using Automated Curing System (양생자동화 시스템을 이용한 매스 콘크리트 온도균열 제어)

  • Ha, Ju-Hyung;Cho, Yun-Gu;Hyun, Tae-Yang;Lim, Chang-Keun;Seo, Tae-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.195-200
    • /
    • 2013
  • New thermal crack control system for mass concrete was developed to increase quality and to save construction period and cost. The principle of this system is that the curing water having proper temperature is supplied automatically to the surface of mass concrete member to keep the temperature difference between center and surface of concrete less than generally recommended temperature difference ($20^{\circ}C$). Mock-up test was conducted to investigate the validity of newly developed curing system. As a result, no crack was founded in the specimen using automated curing system developed in this study, while many cracks occurred in another specimen without automated curing system. It was also confirmed that the strength and the durability of the concrete cured by automated curing system were improved.

Evaluation of Structural Integrity and Leakage for a Gas Turbine Casing (가스터빈 케이싱의 구조안전성 및 누설 평가)

  • Seo, Hee Won;Ham, Dong Woo;Kim, Kyung Kook;Han, Jeong Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.347-354
    • /
    • 2016
  • Because typical gas turbine systems have frequent startup and shutdown operations, it is likely to cause cracks at the gas turbine casing and gas leakages at casing flanges due to thermal fatigue and embrittlement. Therefore, the evaluation of structural integrity and gas leakage at the gas turbine casings must be performed. In this paper, we have evaluated the structural integrity of the turbine casing and bolts under a normal operation in accordance with ASME B&PVC and evaluated the leakage at casing flanges by examination of contact pressure calculated using the finite element analysis. Finally, we propose a design flow including finite element modeling, the interpretation and evaluation methods for gas turbine casings. This may be utilized in the design and development of gas turbine casings.

The Effect of Ground Granulated Blast-Furnace Slag on the Control of Temperature Rising in High Strength Concrete (고강도용 콘크리트의 온도상승 억제를 위한 고로슬래그 미분말의 효과)

  • 문한영;최연왕
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.195-204
    • /
    • 1998
  • Generally, in order to maintain high strength in concrete, it needs high cement content and low water-cement ratio.makes internal temperature rising after concrete placing inevitably, and happens temperature stress that makes initial cracks of concrete structure. Therefore, to control the thermal stress of high-strength concrete, we made 3 types of the fineness of ground granulated blast-furnace slag and 4 steps replacement. and then measured an amount of temperature rising and elapsed time of maximum temperature and strength of concrete. Also we considered the test results of heat evolution amount and heat evolution of cement paste made with 5 steps replacement by GGBF slag.As result of this study, in case of the 50% of replacement and the 6,000$\textrm{cm}^2$/g of fineness, we obtained satisfactory results that not only the controlled effect of temperature rising but strength at early ages.

Failure Mechanism and Long-Term Hydrostatic Behavior of Linear Low Density Polyethylene Tubing (선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 장기 정수압 거동)

  • Weon, Jong-Il;Chung, Yu-Kyoung;Shin, Sei-Moon;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.440-445
    • /
    • 2008
  • The failure mechanism and failure morphology of linear low density polyethylene (LLDPE) tubing under hydrostatic pressure were investigated. Microscopic observations using video microscope and scanning electron microscope indicate that the failure mode is a brittle fracture including cracks propagated from inner wall to outer wall. In addition, oxidation induction time and Fourier transform infrared spectroscopy results show the presence of exothermic peak and the increase in carbonyl index on the surface of fractured LLDPE tubing, due to thermal-degradation. An accelerated life test methodology and testing system for LLDPE tubing are developed using the relationship between stresses and life characteristics by means of thermal acceleration. Statistical approaches using the Arrhenius model and Weibull distribution are implemented to estimate the long-term life time of LLDPE tubing under hydrostatic pressure. Consequently, the long-term life time of LLDPE tubing at the operating temperature of $25^{\circ}C$ could be predicted and also be analyzed.

Thermal Compatibility of High Density U-Mo Powder Fuels Prepared by Centrifugal Atomization

  • Kim, Ki-Hwan;Ahn, Hyun-Suk;Chang, Se-Jung;Ko, Young-Mo;Lee, Don-Bae;Kim, Chang-Kyu;Kuk, Il-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.165-170
    • /
    • 1997
  • Samples of extruded dispersions of 24 vol.% spherical U-2wt%Mo and U-10wt.%Mo powders in an aluminum matrix were annealed for over 2,000 hours at 40$0^{\circ}C$. No significant dimensional changes occurred in the U-1025.%Mo/aluminum dispersions. The U-2wt.%Mo/aluminum dispersion, however, increased in volume by 26% after 2,000 hours at 40$0^{\circ}C$. This large volume change is mainly due to the formation of voids and cracks resulting from nearly complete interdiffusion of U-Mo and aluminum. Interdiffusion between U-10wt.%Mo and aluminum was found to be minimal. The different diffusion behavior is primarily due to the fact that U-2wt.%Mo decomposes from an as-atomized metastable r-phase(bcc) solid solution into the equilibrium r-U and U$_2$Mo two-phase structure during the experiment, whereas U-10wt.%Mo retains the metastable r-phase structure after the 2,000 hours anneal and thereby displays superior thermal compatibility with aluminum compared to U-2wt.%Mo. In addition, the molybdenium supersaturated in U-10wt.%Mo particles inhibits the diffusion of aluminum atoms along the grain boundary into the particle. Also, the dissolution of only a few Mo atoms in UAL$_3$ retards the formation of the intermediate phase, as Mo atoms need to migrate from new intermetallic compounds to unreacted islands.

  • PDF

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.