• Title/Summary/Keyword: thermal control design

Search Result 639, Processing Time 0.031 seconds

Transient Analysis of a Simple Cycle Gas Turbine Engine

  • Kim, SooYong;Soudarev, B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.22-29
    • /
    • 2000
  • A method to simulate the gas turbine transient behavior is developed. The basic principles of the method and main input data required are described. Calculation results are presented in terms of whole operating regime of the engine. The influence of initial parameters such as starting engine power, moment of inertia of the rotor, fuel schedule on performance characteristics of gas turbine during transient operation is shown. In addition, the effect of bleeding air on transient behavior is also considered. For validation of the developed computer code, a comparative analysis with experimental data obtained from a heavy duty gas turbine is made. Calculation results agree well with the experimental data for the range of operating regime studied and proved applicability of the developed technique to initial design stage of control system.

  • PDF

The F/S Concept Design for Solid Motor Thrust Vector Control (고체모터 추력제어를 위한 F/S 개념 설계)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.170-176
    • /
    • 2008
  • The concept design of Flexible Seal for thrust vector control of solid motor was performed. Through the concept design, the optimum pivot point of flexible seal, cross-section configuration of flexible seal and thermal protection system from combustion gas was decided. The pivot point of flexible seal has aft pivot type and cross-section view is conical type. For satisfying a spring torque rate, the shear modulus of rubber has the value of under about 0.6MPa and failure shear stress has over about 2.5MPa.

  • PDF

Modeling and controller design for a continuous copolymerization reactor (연속식 공중합 반응기의 모델링 및 제어기 설계)

  • 황우현;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.788-791
    • /
    • 1996
  • A mathematical model is developed for thermal solution copolymerization of styrene and acrylonitrile in a continuous stirred tank reactor(CSTR). Computational studies are carried out with the continuous copolymerization system model developed in this work to give the monomer conversion, copolymer composition and the average molecular weights of the copolymer. By performing the dynamic analysis of the reaction system, the polymer properties against the changes in the operating conditions are determined quantitatively. The cascade PID and fuzzy controller show satisfactory performances for both set point tracking and disturbance rejection. Especially, the fuzzy controller is superior to the PID controller.

  • PDF

High Efficient Control Design for Refrigeration System of a Ship

  • Hua, Li
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.241-244
    • /
    • 2006
  • In this paper, we suggest the high efficient control method based on general PI control law to control the refrigeration system of the ship effectively. In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. Thus, we propose decoupling model to eliminate the interfering at first. Next, we design PI controller to control capacity and superheat independently. Finally the control performance was investigated through some experiments. The experiments results show that the PI control design can obtain good control performance deal with the varied control reference and thermal load.

  • PDF

Decoupling Control Design for Variable Speed Refrigeration System of a Ship

  • Hua, Li;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.808-815
    • /
    • 2006
  • In this paper, we suggest decoupling control method based on general PI control law to control variable speed refrigeration system of the ship effectively. In the variable speed refrigeration system, the capacity and the superheat are controlled by inverters and electronic expansion valves respectively for saving energy and improving cost performance. Thus, we propose decoupling model to eliminate the interfering loop between capacity and superheat at first. Next, we design PI controller to control capacity and superheat independently and simultaneously. Finally the control performance was investigated through some experiments. The experimental results show that the PI control design can obtain good control performance under the adjustable control reference and thermal load variation.

THE MODEL PREDICTIVE CONTROLLER FOR THE FEEDWATER AND LEVEL CONTROL OF A NUCLEAR STEAM GENERATOR

  • Lee, Yoon Joon;Oh, Seung Jin;Chun, Wongee;Kim, Nam Jin
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.911-918
    • /
    • 2012
  • Steam generator level control at low power is difficult due to its adverse thermal hydraulic properties, and is usually conducted by an operator. The basic model predictive control (MPC) is similar to the action of an operator in that the operator knows the desired reference trajectory for a finite period of time and takes the necessary control actions needed to ensure the desired trajectory. An MPC is based on a model; the performance as well as the efficiency of the MPC depends heavily on the exactness of the model. In this study, steam generator models that can describe in detail its thermal hydraulic behaviors, particularly at low power, are used in the MPC design. The design scope is divided into two parts. First, the MPC feedwater controller of the feedwater station is determined, and then the MPC level controller for the overall system is designed. Because the dynamic properties of a steam generator change with the power levels, a realistic situation is simulated by changing the transfer functions of the steam generator at every time step. The resulting MPC controller shows good performance.

A Fault Detection System Design for Boiler-Turbine Control System of Thermal Power Pant (화력발전소 보일러-터빈 제어시스템의 고장검출시스템 설계)

  • Yoo, Seog-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.615-620
    • /
    • 2015
  • This paper deals with a fault detection system design for a boiler-turbine control system of thermal power plant. We described the nonlinear properties of the boiler-turbine dynamics as a T-S fuzzy system with time varying measurable parameters. We design a residual generator using an observer based fault detection filter. In order to identify the faulted output sensor, an approximate inverse system is connected to the outport of the fault detection filter. We demonstrate the efficiency of the suggested design method via computer simulations.

An application to HVAC control system based on occupants' thermal response in office buildings (공조제어 적용을 위한 재실자 온열반응 데이터의 유효성 분석에 관한 연구)

  • Han, Hyesim;Kim, Jonghun;Jeong, Hakgeun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.111-117
    • /
    • 2014
  • In South Korea, the government has recently enforced regulations associated with buildings. Temperature restriction in indoor environment is one of the common ways of energy reduction in order not to dissipate heating and cooling energy; however the people who are in restricted temperature feels uncomfortable. Furthermore, occupants cannot feel the same thermal sensation even they are in the same place. For the reason, occupants should express their thermal sensation and HVAC system should be able to apply their demand. It is proved by an adaptive principle. The adaptive model means that people react in ways which tend to restore their comfort, when change occurs such as to produce discomfort. In order to design HVAC control strategies based on adaptive model, we designated an existing office building as a reference building to gather data from actual field. Furthermore, we gathered occupants' thermal sensation and clothing insulation in real-time. We filtered the data with Kalman's filter method. The data was reasonable when there is an alarm messages for asking questionnaire. The response ratio were different in occupants' thermal condition. In conclusion, the filtered occupants' thermal sensation can be used as a real time HVAC control and input value of HVAC control.

The Method of Thermal Crack Control about the LNG Tank Wall in Winter (LNG 저장탱크 벽체의 동절기 온도균열제어 방안)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Baek, Seung-Jun;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Since the first underground LNG tank was constructed in Incheon, continuously many LNG tanks were constructed in Tongyoung and Pyongtaek. The storage capacity of LNG tank increased by 200,000kl and the structure size and the concrete mixing design has changed. The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the thermal crack of massive concrete, the low heat portland cement(type Ⅳ) is applied to bottom annular part, bottom central part, lower walls and ring beam. In this study, in order to thermal crack control about the LNG tank wall(lot 8 of #16 Pyongtaek LNG tank) in winter, analysed the concrete temperature, the extention of term, the curing condition and the concrete mixing design. When the concrete mixing design is changed from OPC+FA25% to LHC+FA25%, the thermal crack index is 1.33 and satisfied with construction specifications(over 1.2).

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF