• Title/Summary/Keyword: thermal change

Search Result 3,136, Processing Time 0.035 seconds

Comparison of the Uniaxial Tensile Strength, Elasticity and Thermal Stability between Glutaraldehyde and Glutaraldehyde with Solvent Fixation in Xenograft Cardiovascular Tissue (이종심혈관 조직에 대한 글루타알데하이드 및 용매를 첨가한 고정방법에 따른 장력, 탄력도 및 열성 안정성 비교연구)

  • Cho, Sung-Kyu;Kim, Yong-Jin;Kim, Soo-Hwan;Park, Ji-Eun;Kim, Wong-Han
    • Journal of Chest Surgery
    • /
    • v.42 no.2
    • /
    • pp.165-174
    • /
    • 2009
  • Background: With the advances of cardiac surgery, the demand for an artificial prosthesis has increased, and this has led to the development and utilization of diverse alternative materials. We conducted this research to improve an artificial prosthesis by examining the changes of the physical qualities, the pressure related tensile strength, the change in elasticity and the thermostability of a xenograft valve (porcine) and pericardium (bovine, porcine) based on the type of fixation liquid we used. Material and Method: The xenograft valves and pericardium were assigned into three groups: the untreated group, the fixed with glutaraldehyde (GA) group and the glutaraldehyde with GA+solvent such as ethanol etc. group. The surgeons carried out each group's physical activities. Each group's uniaxial tension and elasticity was measured and compared. Thermostability testing was conducted and compared between the bovine and porcine pericardium fixed with GA group and the GA+solvent group. Result: On the physical activity test in the surgeon's hand, no significant difference between the groups was sensed on palpation. For suture and tension, the GA+solvent group was slightly firmer than the low GA concentration group. In general, the circumferential uniaxial tension and elasticity of the porcine aortic and pulmonary valves were better in the fixed groups than that in the untreated group. There was no significant difference between the GA and GA+solvent groups (p>0.05). Bovine and porcine pericardium also showed no significant difference between the GA group and the GA+solvent group (p>0.05). When comparing between the groups for each experiment, the elasticity tended to be stronger in most of the higher GA concentration group (porcine pulmonary valve, porcine pericardium). On the thermostability testing of the bovine and porcine pericardium, the GA group and the G+solvent group both had a sudden shrinking point at $80^{\circ}C$ that showed no difference (bovine pericardium: p=0.057, porcine pericardium: p=0.227). Conclusion: When fixing xenograft prosthetic devices with GA, adding a solvent did not cause a loss in pressure-tension, tension-elasticity and thermostability. In addition, more functional solvents or cleansers should be developed for developing better xenografts.

Effect of Processing Additives on Vulcanization and Properties of EPDM Rubber (EPDM 고무의 첨가제에 따른 가류 및 물성에 미치는 영향 연구)

  • Lee, Soo;Bae, Joung Su
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.173-185
    • /
    • 2018
  • Effects of three different types of dispersions and flow improving additives composed with fatty acid esters, fatty acid metal salts and amide compound on the vulcanization and the mechanical properties properties of rubber compounds of EPDM and carbon black as fillers. were investigated using Mooney viscometer, moving die rheometer, hardness tester, and universal test machine. The aging characteristics of vulcanized EPDM compounds were also investigated. The Mooney viscosity measured at $125^{\circ}C$ showed a tendency to decrease in the order of amide type> metal salt type > ester type additive. Scorch time showed little or no difference with the addition of ester or metal salt type additives, but the amide type additive shortened a scorch time more than one minute. Rheological measurement data obtained at $160^{\circ}C$ showed that the vulcanization time was faster for metal salt type and amide type additive systems. Delta torque values of EPDM compound increased with metal salt type and amide type additives, but slightly decreased with ester type additive. The tensile strength of the EPDM compound was greatly improved when an ester type additive was added, but the amide type or metal salt type additive had no significant effect. The elongation was significantly improved for metal salt type additive, while the rest were not significantly affected. The tear strength of the EPDM compounds increased with the addition of all kinds of additives, and it increased remarkably in the case of metal salt type additive. Hardness of the EPDM compounds was nearly same value regardless of additive types. The thermal aging of the EPDM blend at $100^{\circ}C$ for 24 h showed little change in the case of metal salt type or amide type additive, but the elongation tends to decrease by 10-20% for all EPDM compounds containing additives.

Study of the Effects of Ambient Temperature and Car Heater Power on the Train Cabin Temperature (외기 온도와 난방 출력의 철도차량 객실 온도에 대한 영향 연구)

  • Cho, Youngmin;Park, Duck-Shin;Kwon, Soon-Bark;Jung, Woo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5877-5884
    • /
    • 2014
  • Recently, abnormally cold weather has been reported more frequently in winter due to the climate change and abnormal weather changes. On the other hand, the heating capacity of a railcar may be not enough to warm the cabin under severe cold climatic conditions, which is one of the reasons for the passengers' complaints about heating. In this study, the effects of ambient temperature and heater power on the cabin temperature was investigated to obtain the minimum ambient temperature for the tested railcar. The test railcar was placed in a large-climatic chamber, and various ambient temperature conditions were simulated. The effects of the heater output were investigated by monitoring the cabin temperature under a range of heater output conditions. The mean cabin temperature was $14.0^{\circ}C$, which was far lower than the required minimum temperature of $18^{\circ}C$, under a $-10^{\circ}C$ ambient temperature condition with the maximum heat power. When the ambient temperature was set to $0^{\circ}C$ and $10^{\circ}C$, the maximum achievable cabin temperature was $26.1^{\circ}C$ and $34.0^{\circ}C$. Through calculations using the interpolation method, the minimum ambient temperature to maintain an $18^{\circ}C$ cabin temperature was $-6.7^{\circ}C$ for this car. The vertical temperature difference was higher with a higher power output and higher ambient temperature. The maximum vertical temperature difference was higher than $10^{\circ}C$ in some cases. However, the horizontal temperature difference vs. low temperature (< $2^{\circ}C$) was independent of the power output and ambient temperature. As a result, it is very important to reduce the vertical temperature difference to achieve good heating performance.

Proteolytic Enzymes Distributed in the Tissues of Dark Fleshed Fish 1. Comparison of the Proteolytic Activity of the Tissue Extracts from the Meat of Mackerel and Sardine (혈합육어의 조직중에 분포하는 단백질분해효소 1. 고등어와 정어리 육조직중의 단백질분해효소의 활성비교)

  • PYEUN Jae-Hyeung;KIM Hyeung-Rak;CHO Jin-Guen
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.5
    • /
    • pp.469-476
    • /
    • 1986
  • Proteolytic activity of the tissue extracts from the muscle of mackerel, Scomber japonicus, and sardine, Sardinops melanostcta, was comparence with referenced to the optimum reaction condition. Thermal stability and change of proteolytic activity of the tissue extracts during storage were investigated. The existence of acid, weak acid and alkaline proteinase was identified in the ordinary and dark muscle of the mackerel and sardine. Specific activity of acid proteinase was stronger than weak acid or alkaline proteinase in the both fish. The proteolytic activity of the tissue extracts on the optimum reaction condition was: ordinary muscle of mackerel, 0.12 nM-Tyr. eq./mg-prot. /min. at pH 3.0 and $50^{\circ}C$; dark muscle of mackerel, 0.36 nM-Tyr. eq./mg-prot. /min. at pH 3.0 and $45^{\circ}C$; ordinary muscle of sardine, 0.45 nM-Tyr. eq./mg-prot. /min. at pH 2.4 and $45^{\circ}C$; dark muscle of sardine, 0.24 nM-Tyr. eq./mg-port. /min. at pH 2.4 and $45^{\circ}C$. The proteinases distributed in the muscle of mackerel and sardine were stable with the heat treatment at $45^{\circ}C$ for 5 minutes, but those in the dark muscle of mackerel was stable with the treatment at $5^{\circ}C$ for 5 minutes. The proteinases from the muscle were slowly inactivated with the whole storage days at $5^{\circ}C\;and\;-15^{\circ}C$, those were more stable at $-15^{\circ}C\;than\;5^{\circ}C$ storage.

  • PDF

Interannual Variation of the TOMS Total Ozone and Reflectivity over the Globe (전지구에 대한 TOMS 오존전량과 반사율의 경년 변화)

  • Yoo, Jung-Moon;Jeon, Won-Sun
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.703-718
    • /
    • 2000
  • In order to investigate interannual variation of total ozone and reflectivity over the globe, Nimbus-7/TOMS data were used on the monthly mean and its anomaly for the period of 1979-92. This study also examined MSU channel 4(Ch4; lower-stratosphere) brightness temperature data and two model reanalyses of NCEP and GEOS to compare the ozone variation with atmospheric thermal condition. In addition, the MSU channel 1(Ch1 ; lower-troposphere) brightness temperature was used to compare with the reflectivity. The ozone showed strong annual cycle with downward trend(-6.3${\pm}$0.6 DU/decade) over the globe, and more distinct response to volcanic eruption than El Ni${\tilde{n}$o. The relationship between total ozone and MSU Ch4 observation, and between the ozone and model reanalyses of lower stratosphere temperature showed positive correlation(0.2-0.7) during the period of 1980-92. Reflectivity increased interannually by 0.2${\pm}$0.06%/decade over the globe during the above period and reflected El Ni${\tilde{n}$o(1982-83, 1991-92) well. Its variability in annual cycle was remarkably smaller in tropics than in higher latitudes. This is inferred due to cloud suppression and tropical upwelling regions. Reflectivity correlated negatively(-0.9) to the Ch1 temperature over the globe, but positively(0.2) over tropical ocean. The positive value over the ocean results from the effect of microwave emissivity which increases the Ch1 temperature with enhanced hydrometeor activity. Significant correlations between total ozone and the Ch4 temperature, and between reflectivity and the Ch1 Suggest that the TOMS data may use valuably to better understand the feedback mechanism of climate change.

  • PDF

The Influence of Water Temperature and Salinity on Filtration Rates of the Hard Clam, Gomphina veneriformis (Bivalvia) (수온과 염분의 변화에 따른 연령별 대복 (Gomphina veneriformis: Bivalvia) 의 여과율 변동)

  • Shin, Hyun-Chool;Lee, Jung-Ho;Jeong, Hyo-Jin;Lee, Jung-Sick;Park, Jung-Jun;Kim, Bae-Hoon
    • The Korean Journal of Malacology
    • /
    • v.25 no.2
    • /
    • pp.161-171
    • /
    • 2009
  • The present study was performed to describe the influence of water temperature and salinity on filtration rates of the venus clam, Gomphina veneriformis, a suspension-feeding (filter-feeding) bivalve species. The calmswere collected from the eastern coastal area of Sokcho, Gangneung and Jumunjin at Kangwon-do, Korea, during December 2006 and May 2007. Isochrysis galbana (KMCC H-002) cells as food organisms were indoor-cultured by f/2 medium, and were used to measure the filtration rate of clam. Filtration rates of clam were measured by indirect method. Cell concentration of food organisms were determined by direct counting cells used the hemacytometer under the light microscope. The filtration rates of clams by water temperature sharply increased with temperatures up to $15^{\circ}C$ as optimum temperature and above this temperature, the filtration rates decreased exponentially. Venus clams showed very low filtration rates at low salinity (10-15 psu) and maximum values at high salinity (30-35 psu). Regardless of water temperature and salt change, 2-year class clams showed high filtration rates, but low in 4-year-class. Polynomial regression curves with water temperature were shifted to the left in low temperature region. Thermal coefficient $Q_{10}$ values showed much higher values at low temperature range than at high temperature range, too. These results indicate that the venus clam is more sensitive in cold water. Polynomial regression curves with salinity were shifted to the right in high saline region. According to this study, the venus clam Gomphina veneriformis, subtidal filter-feeding bivalve, was the stenothermal organism, inhabited mainly in low temperature and the stenohaline, in high saline waters.

  • PDF

Relation between Changes of DITI and Clinical Results according to the Level and Extent of Sympathicotomy in Essential Hyperhidrosis (본태성다한증에서 흉부교감신경의 차단 범위와 부위에 따른 임상결과와 체열변화 사이의 관계)

  • 최순호;임영혁;이삼윤;최종범
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.64-71
    • /
    • 2004
  • Background: Video-assisted sympathicotomy is a safe and effective method for the treatment of essential hyperhidrosis with immediate symptomatic improvement. However, this is offset by the occurrence of a high rate of side-effects, such as embarrassing compensatory hyperhidrosis. Therefore, by comparing and assessing the relationship between temperature change measured by DITI (digital infrared thermographic imaging) and clinical results according to the level and extent of sympathicotomy in essential hyperhidrosis. we tried to obtain a more precisely and objectively, the distribution and degree of compensatory sweating by DITI and also for ascertaining the clinical usefulness. Material and Method: From January 2000 to June 2002, the thoracoscopic sympathicotomy was performed in 28 patients suffering from essential hyperhidrosis in Dept. of Thoracic and Cardiovascular Surgery, Wonkwang University Hospital. The patients were divided into four groups, Group I: patients having undergone T2 sympathicotomy, Group II: patients having undergone T3 sympathicotomy, Group III: patients having undergone T3,4 sympathicotomy, and Group IV: patients having undergone T2,3,4 sympathicotomy. The parameters were composed of the satisfaction rate of treatment, the degree of compensatory and plantar sweating, and temperature changes of entire body measured by DITI Result: There was no difference in age and follow-up period among the groups. All of the treated patients obtained satisfactory alleviation of essential hyperhidrosis in immediate postoperative period. However, the rate of long-term satisfaction were 85.8%, 85.8%, 42.9%, and 28.6% in group I, II, III, and IV (p<0.05). More than embarrassing compensatory sweating was present in 14.2%, 14.2%, 57.1%, 71.4% in group I, II, III, and IV (p<0.05) In regard to plantar sweating, decrease in sweating was expressed in each of four groups, but was not significant between groups. An apparent increase of temperature measured by DITI indicated sufficient denervation and predicted long-lasting relief of essential hyperhidrosis and also decrease in temperature of trunk and lower extremity by DITI had correlated well with postoperative satisfaction, and also postoperative compensatory sweating. Conclusion: We suggested that the incidence and degree of compensatory sweating was closely related to the site and the extent of thoracic sympathicotomy. Resection of the lower interganglionic neural fiber of the second thoracic sympathetic ganglion on the third rib is the most practical and minimally invasive treatment than other surgical methods. We were also to anticipated the distribution and degree of compensatory sweating by DITI precisely and objectively and for ascertaining the clinical usefulness.

Effects of Polyimide Passivation Layers and polyvinylalcohol Passivation Layers for Organic Thin-Film Transistors(OTFTs) (폴리이미드 패시베이션과 폴리비닐알콜 패시베이션 레이어 성막이 고성능 유기박막 트렌지스터에 주는 영향)

  • Park, Il-Houng;Hyung, Gun-Woo;Choi, Hak-Bum;Hwang, Sun-Wook;Kim, Young-Kwan
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.195-198
    • /
    • 2008
  • In this paper, it was demonstrated that organic thin-film transistors (OTFTs) were fabricated with the organic passivation layer by vapor deposition polymerization (VDP) processing. In order to form polymeric film as a passivation layer, VDP process was also introduced instead of spin-coating process, where polymeric film was co-deposited by high-vacuum thermal evaporation from 6FDA and ODA followed by curing. In order to investigate by compared with different passivation layer, the other OTFTs is fabricated to passivation by Polyvinylalcohol using spincoating. We can see that two different ways of passivation layer affect electric characteristic of OTFTs. The initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.24cm^2/Vs$, -3V, and $10^6$, respectively. Then after polyimide passivation layer, field effect mobility change from $0.24cm^2/Vs$ to $0.26cm^2/Vs$, threshold voltage from -3V to 1V and on-off current ratio from $10^6$ to $10^6$, respectively. In the case of polyvinylalcohol passivation, the initial electric characteristic of OTFTs before passivation such as field effect mobility, threshold voltage, and on-off current ratio are $0.13cm^2/Vs$, 0V, and $10^6$, respectively. Then after polyvinylalcohol passivation layer, field effect mobility changes from $0.13cm^2/Vs$ to $0.13cm^2/Vs$, threshold voltage from 0V to 2V, and on-off current ratio from $10^6$ to $10^5$, respectively.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Antimicrobial, antifungal effect and safety verification using BCOP assay of extracts from Coptis chinensis (황련(Coptis chinensis) 추출물의 항균, 항진균 효과와 BCOP 분석을 이용한 안전성 검증)

  • Kim, Eun-Hee;Jang, Young-Ah;Kim, Sol-Bi;Kim, Han-Hyuk;Lee, Jin-Tae
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.297-304
    • /
    • 2018
  • Coptis chinensis is used in oriental medicine for soothing, anti-inflammation, antimicrobial and antipyretic properties, and its main ingredient berberine is known to have strong antibacterial activity. In this study, we investigated the anti-microbial effect of hot water extract of Coptis chinensis (CW) on skin related microorganism and the airborne microbe, the antifungal effects of fungi, which are frequently detected in residential environments. CW showed antibacterial effect against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis, against the airborne microbe, which was collected in four different places. At the concentration of 100 mg/mL, the antimicrobial activity continued for 42 days, showed heat stability without change in the antimicrobial activity even after heat treatment. The MIC and MBC of CW against S. aureus was 0.03, 0.05 mg/mL, against S. epidermidis was 0.50, 0.75 mg/mL and against P. acne was 0.10, 0.15 mg/mL. As a result of measuring the MIC of four kinds of fungi with high detection frequency in the surrounding environment, Gliocladium virens was 65 mg/mL by determined as MIC which can inhibit one hundred percent of mycelial growth. The concentration 90 mg/mL was determined as MIC against Aureobasidium pullulans and 100 mg/mL against Penicilium pinophilum and Chaetomium globosum. CW was considered a safe extract that showed no irritation even in the ocular mucous membrane irritation evaluation test, a patch test. Therefore, these results suggest that Coptis chinensis has antimicrobial, antifungal and safety on human body and can be applied to the development of materials for cosmetic and residential environment industries.