• Title/Summary/Keyword: thermal change

Search Result 3,140, Processing Time 0.031 seconds

Thermo-mechanical Behavior of WB-PBGA Packages Considering Viscoelastic Material Properties (점탄성 물성치를 고려한 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2012
  • It is known that thermo-mechanical properties of solder material and molding compound in WB-PBGA packages are considerably affected by not only temperature but elapsed time. In this paper, finite element analysis (FEA) taking material nonlinearity into account was performed for more reliable prediction on deformation behavior of a lead-free WB-PBGA package, and the results were compared with experimental results from moire interferometry. Prior to FEA on the WB-PBGA package, it was carried out for two material layers consisting of molding compound and substrate in terms of temperature and time-dependent viscoelastic effects of molding compound. Reliable deformation analysis for temperature change was then accomplished using viscoplastic properties for solder ball and viscoelastic properties for molding compound, and the analysis was also verified with experimental results. The result showed that the deformation of WB-PBGA packages was strongly dependent on material model of molding compound; thus, temperature and time-dependent viscoelastic behavior must be considered for the molding compound analysis. In addition, viscoelastic properties of B-type molding compound having comparatively high glass transition temperature of $135^{\circ}C$ could be recommended for reliable prediction on deformation of SAC lead-free WB-PBGA packages.

Removal of Residual Stress and In-vitro Recording Test in Polymer-based 3D Neural Probe (폴리머 기반 3차원 뉴런 프로브의 잔류 스트레스 제거 및 생체 외 신호 측정)

  • Nam, Min-Woo;Lim, Chun-Bae;Lee, Kee-Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.33-42
    • /
    • 2009
  • A polymer-based flexible neural probe was fabricated for monitoring of neural activities from a brain. To improve the insertion stiffness, a 5 ${\mu}m$ thick biocompatible Au layer was electroplated between the top and bottom polymer layers. The developed neural probe penetrated a gel whose elastic modulus is similar to that of a live brain tissue without any fracture, To minimize mechanical residual stress and bending from the probe, two new methods were employed: (1) use of a thermal annealing process after completing the device and (2) incorporation of multiple different layers to compensate the residual stress between top and bottom layers. Mechanical bending around the probe tip was clearly removed after employing the two processes. In electrical test, the developed probe showed a proper impedance value to record neural signals from a brain and the result remained the same for 72 hours. In simple in-vitro probe characterization, the probe showed a great removal of residual stress and an excellent recording performance. The in-vitro recording results did not change even after 1 week, suggesting that this electrode has the potential for great recording from neuron firing and long-term implant performance.

  • PDF

Thermal Characteristics of the Garment Air-layers by PCM Concentration Changes (상변화물질 농도변화에 따른 의복내 공기층의 열적 특성)

  • Yoo, Hwa-Sook;Lim, Ji-Hye;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.6
    • /
    • pp.991-998
    • /
    • 2008
  • This study is to determine the effects of PCM concentration on the temperature changes of the air layers of a garment when the environmental temperature changes. The selected PCM was Nonadecane and coated on cotton fabrics with PCM concentrations 10%, 20%, and 30%. The temperature changes of the air layers between fabrics were measured by Human-Clothing-Environment Simulator which measure a dynamic heat transfer. After stabilizing at $34^{\circ}C$ for 1 hour, the multi layered garment system were exposed to $5^{\circ}C$ or $10^{\circ}C$ for 30 minutes and then, exposed to $34^{\circ}C$ for 30minutes. The results like following could be obtained. When the environmental temperature changed high to low, temperature of the air layer increased by heating effect of PCM. In the contrast, when the environmental temperature changed low to high, the temperature increase of the air layer was delayed because of cooling effect by PCM. Also, the more concentration of PCM, the bigger the heating effect. Cooling effect showed more clearly at PCM concentration 20%. The temperature differences of the air layers between with PCM fabrics and with non-PCM fabrics were bigger at $10^{\circ}C$ than at $5^{\circ}C$. Consequently, though PCM has influenced on the temperature of the air layer by heating and cooling effect, those effects haven't shown in all layers equally. It was shown that the effect of PCM varied according to the layer in the case of multi layered garment system and heat gain as well as heat loss in the outermost layer had to be taken into account.

Effect of Pore Structure Change on the Adsorption of NOM and THMs in Water Due to the Increase of Reactivation Number of Coal-based Activated Carbon (석탄계 활성탄의 재생 횟수 증가에 따른 세공 구조 변화가 수중의 NOM과 THM 흡착에 미치는 영향)

  • Son, Hee-Jong;Ryu, Dong-Choon;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.965-972
    • /
    • 2010
  • The objective of this research was to evaluate for the changes of pore structures and adsorption capacities due to the increase the numbers of reactivation. The reactivated GAC had experienced three cycles of water treatment and thermal reactivation. The pore size distributions of virgin and reactivated GACs were very different. The virgin GAC was mostly microporous (< $15\;{\AA}$), with less mesopores ($20{\sim}100\;{\AA}$). The reactivated GACs was mostly mesoporous ($20{\sim}100\;{\AA}$), with less micropores (< $15\;{\AA}$). The specific surface area and total pore volume were reduced as the number of reactivation increased. The maximum adsorption capacity (X/M) of virgin GAC ($964.6\;{\mu}g/g$) for $CHCl_3$ was 2~3 times larger than 1st~3rd reactivated GAC ($255.6{\sim}399.5\;{\mu}g/g$). The maximum adsorption capacity (X/M) of virgin GAC (19.5 mg/g) for DOC (dissolved organic carbon) was equal to that of 1st~3rd reactivated GAC (18.0~18.7 mg/g).

The study on the operation of fire fighting vehicle for a long railway tunnel (장대터널용 소방차량의 운용에 관한 연구)

  • Kwon, Tae-Soon;Park, Won-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.516-521
    • /
    • 2016
  • In this study, we investigated the operation of railroad fire fighting vehicles against fires on trains in a long railway tunnel. In recent years, long railway tunnels (more than 10 km in length) have been built and the number of such tunnels, such as the Geumjeong tunnel (20.3 km in length) on the Gyeongbu high speed line, Solan tunnel (16.7 km in length) on the Yeongdong line and Yulhyeon tunnel (50.3 km in length) on the Suseo high speed line which is scheduled to be opened in the second half of 2016, is increasing. Significant damage is to be expected, due to the increased evacuation time and limited accessibility of fire services when the train is stopped by an urgent fire in the tunnel. Special fire fighting vehicles capable of running on rails have been developed and operated in overseas advanced countries. Therefore, a fire-response system using Unimog vehicles, which can run on road and rail, instead of road vehicles, is necessary. The characteristics of the railway tunnel and thermal environmental change caused by a train fire in a tunnel were analyzed in this study. Also, the operational requirements of the railroad fire fighting vehicles were evaluated by taking into account the specifications of the railroad fire fighting vehicles under development.

Fabrication and Characterization of Lead Oxide (PbO) Film for High Efficiency X-ray Detector (고효율 X선 검출기 적용을 위한 PbO 필름 제작 및 특성 연구)

  • Cho, Sung-Ho;Kang, Sang-Sik;Choi, Chi-Won;Kwun, Chul;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.329-329
    • /
    • 2007
  • Photoconductive poly crystalline lead oxide coated on amorphous thin film transistor (TFT) arrays is the best candidate for direct digital x-ray detector for medical imaging. Thicker films with lessening density often show lower x-ray induced charge generation and collection becomes less efficient. In this work, we present a new methodology used for the high density deposition of PbO. We investigate the structural properties of the films using X-ray diffraction and electron microscopy experiments. The film coatings of approximately $200\;{\mu}m$ thickness were deposited on $2"{\times}2"$ conductive-coated glass substrates for measurements of dark current and x-ray sensitivity. The lead oxide (PbO) films of $200\;{\mu}m$ thickness were deposited on glass substrates using a wet coating process in room temperature. The influence of post-deposition annealing on the characteristics of the lead oxide films was investigated in detail. X-ray diffraction and scanning electron microscopy, and atomic force microscopy have been employed to obtain information on the morphology and crystallization of the films. Also we measured dark current, x-ray sensitivity and linearity for investigation of the electrical characteristics of films. It was found that the annealing conditions strongly affect the electrical properties of the films. The x-ray induced output charges of films annealed in oxygen gas increases dramatically with increasing annealing temperatures up to $500^{\circ}C$ but then drops for higher temperature anneals. Consequently, the more we increase the annealing temperatures, the better density and film quality of the lead oxide. Analysis of this data suggests that incorporation and decomposition reactions of oxygen can be controlled to change the detection properties of the lead oxide film significantly. Post-deposition thermal annealing is also used for densely film. The PbO films that are grown by new methodology exhibit good morphology of high density structure and provide less than $10\;pA/mm^2$ dark currents as they show saturation in gain (at approximate fields of $4\;V/{\mu}m$). The ability to operate at low voltage gives adequate dark currents for most applications and allows voltage electronics designs.

  • PDF

Investigation of Characteristics of Incinerator Bottom Ash and Assessment for Recycle due to the Change of MSW Composition (생활폐기물 성상변화에 따른 소각시설 바닥재의 특성 변화와 시멘트 클링커 원료로 재활용 가능성 평가)

  • Lee, Woo Chan;Shin, Deuk Chol;Dong, Jong In
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.103-106
    • /
    • 2014
  • Recycling of bottom ash from municipal solid waste (MSW) incinerator has been strictly limited due to its composition of high level chlorine and other unfavorable substances. The composition of MSW has been, however, changed after the introduction of garbage-bag sales system, extended producer responsibility (EPR) policy and the prohibition of direct landfill of food waste. Recent waste shows reduced moisture and chlorine content, increased calorific value due to the separation of food waste, incombustible materials and PVC. The main purpose of this study is to investigate the trend of composition changes of MSW incinerator bottom ash and to compare the analytical results with those before the separation system was introduced. CaO content of bottom ash, one of the major component of cement clinker, increased from 26.7% in 2001 to 34.0% in 2006. The chlorine content showed a dramatic decrease from 1.84% in 2001 to 0.00655% in 2006, which is closely compatible with that of the fly ash of coal-utilizing thermal power plants, which is mainly due to the changes of MSW composition. It is eventually considered that there is a possibility of utilizing the incinerator bottom ash as a raw material of cement clinker feed substances.

Effect of Garlic on the Digestion of Beef Protein during Storage (쇠고기에 첨가한 마늘의 소화효과)

  • 류홍수;류홍수;이강호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.447-454
    • /
    • 1991
  • Chopped garlic was added to beef to determine its effect on the protein digestion during storage and heat treatment. The digestibility of raw beef without garlic was not significantly changed during storage at $4^{\circ}C$, but increased as garlic added and aging time increased. The optimal aging time and amount of garlic added was varied with heating time. Trypsin inhibitor did not change the digestibility of beef due to its thermal inactivation. Gel chromatography revealed that the lower molecular weight peptides(2,200~6,150 dalton) were shown in beef-garlic mixture through aging and heating procedure. When aged beef with garlic was digested with four-enzyme system, the soluble portion was increased significantly in comparison with that from raw beef without garlic. Protein quality of beef, as measured by computed PER(C-PER), was improved from 2.14 of raw beef to 2.50 of aged beef with chopped garlic.

  • PDF

A Study on Exothermic Properties of TiO2/Epoxy Nanocomposites (TiO2/Epoxy 나노복합재의 발열 특성에 관한 연구)

  • Ahn, Seok-Hwan;Ha, Yoo-Sung;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.99-104
    • /
    • 2013
  • Recently, various nanoparticles have been used for filler in polymer matrices. The particles of nano size are whether high or not cross-link density in polymer affects the thermal and mechanical properties of one. The properties change as a result of chemical reactions between the nanoparticles and the surface of the polymer. There are two models for nanocomposites: "repulsive interaction" and "attractive interaction" between the nanoparticles and matrix. In this study, the variation in the curing mechanism was examined when nano-size $TiO_2$ was dispersed into an epoxy (Bisphenol A, YD-128) with different curing agents. The results of this study showed that the exothermic temperature and Tg in the case of the nanoparticles used (Jeffamine) (D-180) at room temperature were reduced by an increase in the $TiO_2$ contents because of the "repulsive interaction" between the nanoparticles and the matrix. The tensile strengths were increased by increasing amounts of $TiO_2$ until 3 wt% because of a dispersion strengthening effect caused by the nanoparticles, because of the repulsive interaction. However, such tensile properties decreased at 5 wt% of $TiO_2$, because the $TiO_2$ was agglomerated in the epoxy. In contrast, in the case of the nanoparticles that used NMA and BDMA, the exothermic temperature and Tg tended to rise with increasing amounts of $TiO_2$ as a result of the "attractive interaction." This was because the same amounts of $TiO_2$ were well dispersed in the epoxy. The tensile strength decreased with an increase in the $TiO_2$ contents. In the general attractive interaction model, however, the cross-link density was higher, and tensile strength tended to increase. Therefore, for the nanoparticles that used NMA, it was difficult to conclude that the result was caused by the "attractive model."

Microstructures and Hardness of Al-Si Coated 11%Cr Ferritic Stainless Steel, 409L GTA Welds (Al-Si 용융도금된 11%Cr 페라이트 스테인리스강, STS409L GTA 용접부의 미세조직과 경도)

  • Park, Tae-Jun;Kong, Jong-Pan;Na, Hye-Sung;Kang, Chung-Yun;Uhm, Sang-Ho;Kim, Jeong-Kil;Woo, In-Su;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.92-98
    • /
    • 2010
  • Ferritic stainless steels, which have relatively small thermal expansion coefficient and excellent corrosion resistance, are increasingly being used in vehicle manufacturing, in order to increase the lifetime of exhaust manifold parts. But, there are limits on use because of the problem related to cosmetic resistance, corrosions of condensation and high temperature salt etc. So, Aluminum-coated stainless steel instead of ferritic stainless steel are utilized in these parts due to the improved properties. In this investigation, Al-8wt% Si alloy coated 409L ferritic stainless steel was used as the base metal during Gas Tungsten Arc(GTA) welding. The effects of coated layer on the microstructure and hardness were investigated. Full penetration was obtained, when the welding current was higher than 90A and the welding speed was lower than 0.52m/min. Grain size was the largest in fusion zone and decreased from near HAZ to base metal. As welding speed increased, grain size of fusion zone decreased, and there was no big change in HAZ. Hardness had a peak value in the fusion zone and decreased from the bond line to the base metal. The highest hardness in the fusion zone resulted from the fine re-precipitation of the coarse TiN and Ti(C, N) existed in the base metal during melting and solidification process and the presence of fine $Al_2O_3$ and $SiO_2$ formed by the migration of the elements, Al and Si, from the melted coating layer into the fusion zone.