• Title/Summary/Keyword: thermal camera

Search Result 520, Processing Time 0.025 seconds

Effective Compaction Method of Hot Mix Asphalt Using Infrared Camera (Infrared Camera를 활용한 가열 아스팔트 혼합물의 효율적인 다짐관리 방안)

  • Kim, Jun-Hyung;Lee, Suck-Hong;Kim, Wan-Sang
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.105-108
    • /
    • 2007
  • In resent years, temperature segregation has been identified as one of the most important concepts concerning segregation. An Infrared Camera is one of the tools that have been recognized to be effective in identifying temperature segregation. Several state of USA have recognized the problem and have enacted Specifications, and/or test procedures to eliminate temperature segregation. The major objective of this study is to investigate effective compaction method of hot mix asphalt during road construction using Infrared Camera.

  • PDF

REFOCUSING FOR ON-ORBIT MTF COMPENSATION OF REMOTE SENSING CAMERA

  • Jang Hong-Sul;Jeong Dae-Jun;Lee Seunghoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.601-603
    • /
    • 2005
  • Refocusing methods are used to compensate optical performance degradation of high resolution satellite camera during on-orbit operation. Due to mechanical vibration during launch and thermal vacuum environment of space where camera is exposed, the alignment of optical system may have error. The focusing error is dominant of misalignment and caused by the de-space error of secondary mirror of catoptric camera, which is most sensitive to vibration and space environment. The high resolution camera of SPOT, Pleiades and KOMPSAT2 have refocusing device to adjust focusing during orbital operation while QuickBird of US does not use on orbit refocusing method. For the Korsch type optical configuration which is preferred for large aperture space remote sensing camera, secondary mirror and folding mirror are available as refocusing element.

  • PDF

Measurement of temperature profile using the infrared thermal camera in turbulent stratified liquid flow for estimation of condensation heat transfer coefficients

  • Choi, Sung-Won;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.107-107
    • /
    • 1999
  • Direct-contact condensation experiments of atmospheric steam and steam/air mixture on subcooled water flowing co-currently in a rectangular channel are carried out uszng an infrared thermal camera system to develop a temperature measurement method. The inframetrics Model 760 Infrared Thermal Imaging Radiometer is used for the measurement of the temperature field of the water film for various flow conditions. The local heat transfer coefficient is calculated using the bulk temperature gradient along the (low direction. It is also found that the temperature profiles can be used to understand the interfacial condensation heat transfer characteristics according to the flow conditions such as noncondensable gas effects, inclination effect, and flow rates.

  • PDF

Thermal Performance Evaluation of Apartment Housing Using Infra-red Camera (적외선 열화상을 이용한 공동주택 단열성능 평가 : TDR(온도차비율)을 중심으로)

  • Choi, Gyeong-Seok;Sohn, Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.404-412
    • /
    • 2010
  • The purpose of this study is to accomplished an in-site evaluation method for existing building insulation status using Infra-red camera and to consider improvement performance to prevent condensation and draw the optimum insulation design method for building using simulation tool. The research contents of this study are to evaluate validity and suitability of building insulation defect survey using Infra-red camera for apartment housing with temperature and heat flow pattern analyze method. Based on this research, the three corners, weak part in condensation, were selected in apartment building and conducted simulation by three-dimensional steady state. From the results, it is required to strengthen insulation design, and it is founded that existing insulation system typically applied to most Korean apartment housings have serious insulation defect that insulation is disconnected by structural components at the joints of wall-slab and wall-wall in envelope. Thus, it is considerate to need a concrete technology improvement.

The Development of Infrared Thermal Imaging Safety Diagnosis System Using Pearson's Correlation Coefficient (피어슨 상관계수를 이용한 적외선 열화상 안전 진단 시스템 개발)

  • Jung, Jong-Moon;Park, Sung-Hun;Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the rapid development of the national industry, the importance of electrical safety was recognized because of a lot of new electrical equipment are installing and the electrical accidents have been occurring annually. Today, the electrical equipments is inspect by using the portable Infrared thermal imaging camera. but the most negative element of using the camera is inspected for only state of heating, the reliable diagnosis is depended with inspector's knowledge, and real-time monitoring is impossible. This paper present the infrared thermal imaging safety diagnosis system. This system is able to monitor in real time, predict the state of fault, and diagnose the state with analysis of thermal and power data. The system consists of a main processor, an infrared camera module, the power data acquisition board, and a server. The diagnostic algorithm is based on a mathematical model designed by analyzing the Pearson's Correlation Coefficient between temperature and power data. To test the prediction algorithm, the simulations were performed by damaging the terminals or cables on the switchboard to generate a large amount of heat. Utilizing these simulations, the developed prediction algorithm was verified.

Effect of Thermal Segregation Reduction in Asphalt Paving with MTV (MTV를 적용한 아스팔트 포설에서 열분리 저감 효과)

  • Kweon, Gichul
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate of the effect of thermal segregation reduction in asphalt paving using material transfer vehicles (MTVs). METHODS : Asphalt paving using MTVs was carried out, and the paved surface temperature was measured using an infrared camera. The amount of thermal segregation was estimated from temperature variations. RESULTS : The transportation of hot mix asphalt (HMA) using dump trucks caused temperature segregation that persisted in the paving surface if an MTV was not used. The average temperature variation was 8.58% in paved surfaces where an MTV was not used. However, the temperature variation was 3.10%, 2.86%, and 4.53% for the base layer, inter-layer, and surface layer, respectively, when an MTV was used. CONCLUSIONS : The use of an MTV in asphalt paving reduces thermal segregation approximately 2.3 times in an asphalt mat via a remixing process and also allows for a smoother work process because the paver never needs to stop to receive HMA. However, MTV equipment without pre-heating devices requires careful temperature control during the warm up process at the MTV during construction in the winter.

Unmanned Multi-Sensor based Observation System for Frost Detection - Design, Installation and Test Operation (서리 탐지를 위한 '무인 다중센서 기반의 관측 시스템' 고안, 설치 및 시험 운영)

  • Kim, Suhyun;Lee, Seung-Jae;Son, Seungwon;Cho, Sungsik;Jo, Eunsu;Kim, Kyurang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.95-114
    • /
    • 2022
  • This study presented the possibility of automatic frost observation and the related image data acquisition through the design and installation of a Multiple-sensor based Frost Observation System (MFOS). The MFOS is composed of an RGB camera, a thermal camera and a leaf wetness sensor, and each device performs complementary roles. Through the test operation of the equipment before the occurrence of frost, the voltage value of the leaf wetness sensor increased when maintaining high relative humidity in the case of no precipitation. In the case of Gapyeong- gun, the high relative humidity was maintained due to the surrounding agricultural waterways, so the voltage value increased significantly. In the RGB camera image, leaf wetness sensor and the surface were not observed before sunrise and after sunset, but were observed for the rest of the time. In the case of precipitation, the voltage value of the leaf wetness sensor rapidly increased during the precipitation period and decreased after the precipitation was terminated. In the RGB camera image, the leaf wetness sensor and surface were observed regardless of the precipitation phenomenon, but the thermal camera image was taken due to the precipitation phenomenon, but the leaf wetness sensor and surface were not observed. Through, where actual frost occurred, it was confirmed that the voltage value of leaf wetness sensor was higher than the range corresponding to frost, but frost was observed on the surface and equipment surface by the RGB camera.

Improvement of Multiple-sensor based Frost Observation System (MFOS v2) (다중센서 기반 서리관측 시스템의 개선: MFOS v2)

  • Suhyun Kim;Seung-Jae Lee;Kyu Rang Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.3
    • /
    • pp.226-235
    • /
    • 2023
  • This study aimed to supplement the shortcomings of the Multiple-sensor-based Frost Observation System (MFOS). The developed frost observation system is an improvement of the existing system. Based on the leaf wetness sensor (LWS), it not only detects frost but also functions to predict surface temperature, which is a major factor in frost occurrence. With the existing observation system, 1) it is difficult to observe ice (frost) formation on the surface when capturing an image of the LWS with an RGB camera because the surface of the sensor reflects most visible light, 2) images captured using the RGB camera before and after sunrise are dark, and 3) the thermal infrared camera only shows the relative high and low temperature. To identify the ice (frost) generated on the surface of the LWS, a LWS that was painted black and three sheets of glass at the same height to be used as an auxiliary tool to check the occurrence of ice (frost) were installed. For RGB camera shooting before and after sunrise, synchronous LED lighting was installed so the power turns on/off according to the camera shooting time. The existing thermal infrared camera, which could only assess the relative temperature (high or low), was improved to extract the temperature value per pixel, and a comparison with the surface temperature sensor installed by the National Institute of Meteorological Sciences (NIMS) was performed to verify its accuracy. As a result of installing and operating the MFOS v2, which reflects these improvements, the accuracy and efficiency of automatic frost observation were demonstrated to be improved, and the usefulness of the data as input data for the frost prediction model was enhanced.

The Frictional Characteristic and Distribution of Temperature in The Continuous Braking Effort on The Train Control (열차 제어의 연속 제동시 마찰특성과 온도분포)

  • Lee Si-Woo;Choi Kyung-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.101-106
    • /
    • 2005
  • During braking at a train, thermal energy is generated due to the frictions between disk and lining and wheel and shoe. In general, the braking transfers the kinetic energy into thermal energy. Therefore. the frictional characteristics are varied according to the braking force, the thermal resistance, and the thermostable, etc. Using a Dynamo testing we have studied the frictional characteristics and the thermal distribution to investigate a stable speed and to improve the testing method through comparing and analysing in the measurement or the thermocouple temperature and infrared camera.

  • PDF