• Title/Summary/Keyword: thermal FEM simulation

Search Result 127, Processing Time 0.037 seconds

The Temperature Distribution Analysis and Temperature Rise Test of Pole Mold Transformer (주상용 몰드 변압기의 온도분포 해석과 온도상승 시험)

  • Cho, Han-Goo;Kim, Seok-Sou;Lee, Un-Yong;Lee, Jong-Doug
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.245-247
    • /
    • 2001
  • In this paper, the temperature distribution and thermal stress analysis of 50kVA pole mold transformer for power distribution are investigated by FEM program. The temperature rise test of designed mold transformer is carried out and test result is analyzed compare to simulation data.

  • PDF

Research of the Thermal Stress effect for Optical Passive Component (Optical Passive Component의 열응력 변화에 따른 문제 연구)

  • Park, Je-Yung;Cha, Doo-Yeol;Yeo, Dong-Hun;Kim, Jong-Hui;Chang, Sung-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.118-119
    • /
    • 2006
  • 현재의 소자간 연결을 위해 사용되는 금속배선의 한계로 인해 보다 고속/대용량의 광연결(Optical Interconnection)이 크게 각광받고 있다. 본 논문에서는 FEM 시뮬레이션(Finite Element Method Simulation)을 통해 온도변화에 따른 기판에서의 온도분포를 살펴보고, 열응력 분포와 열응력 집중에 의한 기판의 변형으로 인한 문제를 연구하였다. 이를 통해 향후 Optical Passive Component 설계시 Optical Passive Component 변형의 원인이 될 수 있는 열원들의 배치를 최적화 시키고 기판의 취약부운을 보강하여 우수한 성능의 Optical Passive Component 제작을 목표로 하고 있다.

  • PDF

A Study on the Geometric Body Design for a 3"-PFA-lined Plug Valve using CAD Softwares (CAD 소프트웨어를 활용한 3인치 PFA 라이닝 플러그 밸브 본체의 형상설계)

  • Kang, Shin-Han
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.85-93
    • /
    • 2009
  • In this paper, the geometric design for the body of a 3"-PFA-lined plug valve is concerned, and body model which has less deformed PFA-resin after infection molding process is proposed. A CAE software is used to simulate the deformation due to heat in cooling. To reduce the deformation, some small shapes are added to PFA-resin surfaces related on wall of the valve housing. And thermal stress simulation with FEM methodology is followed after that. Also, the 3D-CAD package is used during the design processes. In this study, I tried to present the possibility to use the FEM analysis in the solid modeling process. So, the design engineer will be able to use analysis package effectively on his job within the limited range.

Simulation of the Corona Charging Process in Polypropylene Electret for Sensor Material

  • Park, Geon-Ho;Park, Young-Chull;Yang, Jung-Yoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.68-72
    • /
    • 2000
  • In order to estimate spatial charging process in the corona charging which has been used to make polymer electret, the electrical properties of polypropylene film were obtained from Thermally Stimulated Current (TSC) measurements after corona charging between knife electrode and cylinder electrode with the voltages of -5, -6, -7 and -8[kV], respectively. And then the electrostatic contour and the electric field vector were also simulated by using Finite Element Method (FEM). The edge effect around edge of knife electrode affected the electrostatic contour on surface of specimen and the electric field concentration inside specimen. The uneven charging state in the electret due to the mistake on design could be calculated and so the optimal design of corona charging device which is appropriate to various materials is come to be practicable.

  • PDF

Numerical Analysis for Thermal Isolation on Plasma Etched silicon micro-structures (DRIE 식각을 이용한 대면적 실리콘 미세 구조물 부유 시 발생하는 열고립 현상 해석)

  • Lee, Yong-Seok;Jang, Yun-Ho;Kim, Jung-Mu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1684-1685
    • /
    • 2011
  • This paper presents a theoretical and numerical analysis for thermal isolation of silicon micro-structures, especially for a large size with poor thermal conductivity, as well as straightforward solution for such an issue. Additional metal patterns underneath the silicon structures effectively reduces the thermal isolation. Heat transfer mechanism is analyzed using an equivalent circuit of thermal network including plasma, a heat source, heat capacitors, and thermal resistances. The FEM simulation was carried out to investigate the temperature change of silicon micro-structures according to process time. The temperature of silicon micro-structures with 2 ${\mu}m$ thick chrome layer at a steady state is $86^{\circ}C$, an approximately 40% decrease from the silicon microstructure without thin metal ($122^{\circ}C$)

  • PDF

Optimization of Heatsink and Analysis of Thermal Property in 75W LED Module for Street Lighting (75W급 LED 가로등 모듈의 방열판 최적화와 열특성 분석)

  • Lee, Seung-Min;Lee, Se-Il;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.609-613
    • /
    • 2010
  • In this paper, we optimized and simulated the heatsink of 75W LED module for street lighting and evaluated the optical properties with the manufactured heatsink. the structure of LED package make simple as chip and heatslug and thermal flow is analyzed by using the FEM(Finite Element Method) with CFdesign V10. Also, we measured the temperature of heatsink and evaluated the optical properties with infrared thermal image camera and integrated sphere system for luminous flux in $1\;[m^3]$ box. As results, Heatsink optimized in 3 mm pin thickness, 6 mm base thickness and 16 number of pin count by using Heatsink-designer and got the results which is the temperature of $47.37\;[^{\circ}C]$ and thermal resistance of $0.48407\;[W/^{\circ}C]$. In thermal flow simulation, the temperature of heatsink decreased from $51.54\;[^{\circ}C]$ to $51.51\;[^{\circ}C]$ and the temperature of heatsink by the time in real measurement decreased from $47.03\;[^{\circ}C]$ to $46.87\;[^{\circ}C]$. Moreover, we improve 0.68 % in the decreased ratio of the luminous flux.

Prediction of the Effect of Defect Parameters on the Thermal Contrast Evolution during Flash Thermography by Finite Element Method

  • Yuan, Maodan;Wu, Hu;Tang, Ziqiao;Kim, Hak-Joon;Song, Sung-Jin;Zhang, Jianhai
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • A 3D model based on the finite element method (FEM) was built to simulate the infrared thermography (IRT) inspection process. Thermal contrast is an important parameter in IRT and was proven to be a function of defect parameters. Parametric studies were conducted on internal defects with different depths, thicknesses, and orientations. Thermal contrast evolution profiles with respect to the time of the defect and host material were obtained through numerical simulation. The thermal contrast decreased with defect depth and slightly increased with defect thickness. Different orientations of thin defects were detected with IRT, but doing so for thick defects was difficult. These thermal contrast variations with the defect depth, thickness, and orientation can help in optimizing the experimental process and interpretation of data from IRT.

Finite Element Simulation of Interface Bonding in Kinetic Sprayed Coatings (유한요소 시뮬레이션을 통한 저온 분사 코팅의 계면 접합에 대한 연구)

  • Bae, Gyu-Yeol;Kang, Ki-Cheol;Yoon, Sang-Hoon;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2008
  • A finite element modeling approach has been described for the simulation and analysis of the micron-scaled solid particle impact behavior in kinetic spraying process, using an explicit code (ABAQUS 6.7-2). High-strain-rate plastic deformation and interface bonding features of the copper, nickel, aluminum, and titanium were investigated via FEM in conjunction with the Johnson-Cook plasticity model. Different aspects of adiabatic shear instabilities of the materials were characterized as a concept of thermal boost-up zone (TBZ), and also discussed based upon energy balance concept with respect to relative recovery energy (RRE) for the purpose of optimizing the bonding process.

Computer aided simulation of spark plasma sintering process (Part 2 : analysis) (스파크 플라스마 소결공정의 전산모사(2부 : 해석))

  • Keum Y.T.;Jung S.C.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • In this Part 2, the grain growth processes of $Al_2O_3$ ceramics is numerically simulated using Monte Carlo method (MCM) and finite element method (FEM) and the pore sizes are analyzed. As the green ceramics whose thermal conductivities in high temperatures are generally low are sintered by the plasma heat and are rapidly cooled, the grain growth of the sintered body in the center is different from that in the outer. Also, even in the same sintering temperature, the pore size differs according to the pressing pressure. In order to prove the difference, the temperature distribution of the sintered body was analyzed using the finite element method and then the grain growth process associated with pressing pressures and relative densities was simulated using Monte Carlo method.