• Title/Summary/Keyword: thermal FEM simulation

Search Result 127, Processing Time 0.028 seconds

Thermal Crack Creation Process in an Automotive Brake Disk (자동차 브레이크 디스크의 열 균열 생성)

  • Ahn, S.;Lee, B.;Cho, C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.143-147
    • /
    • 2000
  • This describes thermal crack creation process in automotive disks. Thermal cracks have been serious defects which induced disastrous accidents during traveling. The thermal cracks must be regularly eye-inspected. The cracks have been experimentally analysed; but they were not reported by analytic means yet. This paper proposed thermal crack creation process by a computer simulation which enlightened how to investigate thermal crack by cheap means. We explained the disk thermal crack creation and calculated stress intensity factor of an assumed surface crack in an automotive disk.

  • PDF

Thermal Characteristic Simulation and Property Evaluation of High Melting Point Materials by Pulsed Current Activated Sintering Process (PCAS공정에 의한 고융점 소결체 열전달 해석 및 특성분석)

  • Nam, Hyo-Eun;Jang, Jun-Ho;Park, Hyun-Kuk;Oh, Ik-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.214-222
    • /
    • 2017
  • In this study, the effects of internal heat treatment associated sintering temperatures were simulated by the Finite Element Method (FEM). The sintering mechanism of pulsed current activated sintering process (PCAS) is still unclear because of some unexplainable heat transfer phenomena in coupled multi-physical fields, as well as the difficulty in measuring the interior temperatures of metal powder. We have carried out simulation study to find out thermal distributions between graphite mold and Ruthenium powder prior to PCAS process. For PCAS process, heating rate was maintained at $100^{\circ}C/min$ the simulation indicates that the sintering temperature range was between $1000^{\circ}C$ to $1300^{\circ}C$ under 60 MPa. The heat transfer inside the Ruthenium sintered-body sample was modelled through the whole process in order to predict the minimum interior temperature. Thermal simulation shows that the interior temperature gradient decreased by graphite punch length and calculation results well agreed with the PCAS field test results.

Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide (Thermally Grown Oxide의 고온 크리프에 따른 열차폐 코팅의 잔류응력 분포에 관한 유한요소해석)

  • Jang, Jung-Chel;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.479-485
    • /
    • 2006
  • The residual stress changes on thermo-mechanical loading in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloys using a Finite Element Method (FEM). It was found that the residual stress of the interface boundary was dependent upon mainly the oxide formation and the swelling rate of the oxide by creep relaxation. During an oxide swelling, the relaxation of residual stress which is due to creep deformation increased the TBC's life. In the case of the fine grain size of TGO scale, the TBC stresses piled up by oxide swelling could be relaxed by diffusional creep effect of TGO.

Thermal decomposition and ablation analysis of solid rocket nozzle using MSC.Marc (상용해석 코드(MSC-Marc)를 활용한 노즐 내열부품의 숯/삭마 해석 기법)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.311-314
    • /
    • 2009
  • A two-dimensional thermal response and ablation simulation code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermal analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem and endothermic reaction in thermal decomposition are solved by rezoning and effective specific heat method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code through continuity of temperature and heat flux.

  • PDF

The Characteristic of TEC Power Consumption of Laser Diode Module (레이저다이오드 모듈 냉각용 TEC 소비전력 특성)

  • Lee Jong Jin;Yu Chong Hee;Kang Hyun Seo;Koh Jai Sang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.71-76
    • /
    • 2004
  • The power consumption of TEC for Laser diode cooling was predicted by 3-D FEM simulation and verified by experiment. The operating conditions such as power consumption of Laser diode, set temperature, ambient temperature, resistance of thermal path was considered to estimate the TEC power consumption. Using 3-D FEM simulation, the relation between TEC configuration defined by the pellet dimension and the number and power consumption was investigated for low power consumption scheme. As a result, as the thermal resistance of the pellet increased, the power consumption decreased.

  • PDF

Fabrication and test of heater triggered persistent current switch using coated conductor tapes (Coated conductor를 이용한 히터트리거 방식의 영구전류 스위치의 제작과 실험)

  • Kim, Young-Jae;Yang, Seong-Eun;Park, Dong-Keun;Ahn, Min-Cheol;Yoon, Yong-Soo;Ko, Tae-Huk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2039-2040
    • /
    • 2006
  • Persistent current switch (PCS) system in NMR, MRI, MAGLEV and SMES has many advantages, such as uniformity and durability of magnetic field and reducing a thermal loss, which enable many superconducting application to operate effectively. This paper deals with fabrication and test of heater trigger persistent current switch using coated conductor (CC) which has high n-index, critical current independency from external magnetic field and adaptable selectivity of stabilizer. PCS system consists of magnet power supply for energizing current to a magnet, heater, switch and magnet using coated conductor tape. Finite element method (FEM) is used to simulate thermal quench (switching) characteristic and design heater trigger. With FEM simulation, optimal length of heater is calculated by temperature and time analysis. Fabrication of PCS system and test of heater trigger characteristic were performed and compared with simulation result. This paper would be the foundation of researches of superconducting switching application.

  • PDF

Fabrication of low power micro-heater for micro-gas sensor II. Characteristics of micro-gas sensor

  • Chung, Wan-Young;Lee, Sang-Moon;Kang, Bong-Hwi;Jang, Dong-Kun;Lee, Duk-Dong;Yamazoe, Noboru
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.237-244
    • /
    • 1997
  • A new planar-type microsensor, which had a platinum heater and a sensing layer on the same plane was fabricated on silicon substrate with stress-relieved PSG(phosphosilicate glass)/$Si_{3}N_{4}$(800nm/150nm) diaphragm. The proposed planar-type microsensor could be fabricated by simple silicon process using only 3 masks for photolithography process compared with 5 or 6 masks of the typical micro-gas sensor. The thermal properties of the microsensor from thermal simulation were compared with those of the fabricated microheater. Although there are some discrepancy between the simulation result and the result from the fabricated microheater, the thermal simulation by FEM was proved to be an useful method to evaluate the thermal properties of microheater. The sensing characteristics of the fabricated microsensor with the planar-type heater were investigated also.

  • PDF

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

An lnvestigation of the thermoelastic Behavior in Short Fiber Reinforced Composite Materials (단섬유 보강 복합재료에서의 열탄성 거동에 관한 해석)

  • 김홍건
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.89-95
    • /
    • 1997
  • A simulation to investigate the thermal behavior in short fiber or whisker reinforced composite materials has been performed for the application to the thermoelastic stress analysis using Finite Element Method (FEM). To obtain the internal field quantities of composite material, the procedure of micromechanical modeling and the principle of virtual work were implemented. For the numerical illustration, an aligned axisymmetric single fiber model has been employed to assess field quantities. It was found that the proposed simulation methodology for thermoelastic stress analysis is applicable to the complicated inhomogeneous solid for the investigation of micromechanical thermoelastic behavior.

  • PDF

COMPUTER SIMULATION OF ARC INTERRUPTION USING FEM FOR $SF_6$ GAS CIRCUIT BREAKERS

  • Park, K.Y.;Chong, J.K.;Song, K.D.;Lee, B.Y.;Mu, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.68-73
    • /
    • 2000
  • An arc model based on the N-S equations modified by adding an energy source term to take account of the arc is developed and solved using Taylor-Galerkin FEM. The numerical method is applied to the simulation of the interruption process of a puffer type GCB. Moving boundary conditions of the arc chamber during operation is taken into account. The thermal interruption capability of an actual puffer type GCB will be predicted and compared with that of the measured result.

  • PDF